114 resultados para INNATE IMMUNE DEFENSE
Resumo:
A imunidade na glândula mamária pode ser classificada, assim como em outros sistemas, em inata ou inespecífica e adaptativa ou específica. A imunidade inata é a defesa predominante durante os estágios iniciais da infecção. As respostas inespecíficas estão presentes no local da infecção ou são ativadas rapidamente por numerosos estímulos e não aumentam pela exposição repetida ao mesmo agente etiológico. O primeiro obstáculo enfrentado por um patógeno para adentrar o úbere é composto pela barreira formada pelo esfíncter do teto e pelo tampão de queratina formado pelo epitélio queratinizado. Uma vez que o microrganismo tenha atravessado o canal do teto e alcançado a cisterna mamária, passam a atuar diversos fatores solúveis e celulares. Dentre os fatores solúveis, estão presentes: lactoperoxidase, sistema complemento, citocinas, lactoferrina, lisozima e NAGase. As defesas celulares inespecíficas na glândula mamária são representadas pelos neutrófilos, pelos macrófagos e pelas células natural killer. Na medida em que esses mecanismos funcionam adequadamente, a maioria dos patógenos será rapidamente eliminada antes que o sistema imune específico seja ativado, sem resultar em alterações na quantidade ou qualidade do leite produzido. Uma melhor compreensão sobre os mecanismos de defesa da glândula mamária e suas alterações durante os períodos críticos da infecção é imprescindível para o desenvolvimento de métodos mais eficazes de profilaxia e controle da mastite, a principal doença dos ruminantes leiteiros. O presente estudo revisou os principais aspectos responsáveis pelo desenvolvimento da imunidade inata na glândula mamária bovina.
Resumo:
Propolis has been used empirically for centuries and it was always mentioned as an immunomodulatory agent. In recent years, in vitro and in vivo assays provided new information concerning its mechanisms of action, thus a review dealing with propolis and the immune system became imperative. This review compiles data from our laboratory as well as from other researchers, focusing on its chemical composition and botanical sources, the seasonal effect on its composition and biological properties, its immunomodulatory and antitumor properties, considering its effects on antibody production and on different cells of the immune system, involving the innate and adaptive immune response. In vitro and in vivo assays demonstrated the modulatory action of propolis on murine peritoneal macrophages, increasing their microbicidal activity. Its stimulant action on the lytic activity of natural killer cells against tumor cells, and on antibody production was demonstrated. Propolis inhibitory effects on lymphoproliferation may be associated to its anti-inflammatory property. In immunological assays, the best results were observed when propolis was administered over a short-term to animals. Propolis antitumor property and its anticarcinogenic and antimutagenic potential are discussed. Since humans have used propolis for different purposes and propolis-containing products have been marketed, the knowledge of its properties with scientific basis is not only of academic interest but also of those who use propolis as well. This review opens a new perspective on the investigation of propolis biological properties, mainly with respect to the immune system. (c) 2007 Elsevier B.V.. All rights reserved.
Resumo:
A peptide-polysaccharide, a peptide-rhamnomannan, was isolated from the pathogenic yeast form of the fungus Sporothrix schenckii. This substance, which may play a role in fungal virulence, was tested in an animal model of systemic disease, and depression of the immune response was observed in the animals between the 4th and 6th week of infection. Concomitantly, this compound showed mitogenic activity when challenged with normal lymphocytes and was also found to be involved in the inflammatory response. These results provide further information for the understanding of fungal implantation in tissues and of the pathogenicity of this systemic mycosis.
Resumo:
Interleukin-15 (IL-15) is a pleiotropic cytokine which regulates the proliferation, survival and the secretory activities of many distinct cell types in the body. This cytokine is produced by macrophages and many other cell types in response to infectious agents; it controls growth and differentiation of T and B lymphocytes, activation of Natural Killer (NK) and phagocytic cells, and contributes to the homeostasis of the immune system. The present review focuses on the biological and modulatory effects of IL-15 in microbial infections and shows that this cytokine may play a role in the host defense against infections by inducing activation of effector cells from both innate and adaptive immune system.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Helicobacter pylori (H. pylori) infection is the most common bacterial infection worldwide. Persistent infection of the gastric mucosa leads to inflammatory processes and may remain silent for decades or progress causing more severe diseases, such as gastric adenocarcinoma. The clinical consequences of H. pylori infection are determined by multiple factors, including host genetic predisposition, gene regulation, environmental factors and heterogeneity of H. pylori virulence factors. After decades of studies of this successful relationship between pathogen and human host, various mechanisms have been elucidated. In this review, we have made an introduction on H. pylori infection and its virulence factors, and focused mainly on modulation of host immune response triggered by bacteria, changes in the pattern of gene expression in H. pylori-infected gastric mucosa, with activation of gene transcription involved in defense mechanisms, inflammatory and immunological response, cell proliferation and apoptosis. We also highlighted the role of bacteria eradication on gene expression levels. In addition, we addressed the recent involvement of different microRNAs in precancerous lesions, gastric cancer, and inflammatory processes induced by bacteria. New discoveries in this field may allow a better understanding of the role of major factors involved in the pathogenic mechanisms of H. pylori. (C) 2014 Baishideng Publishing Group Co., Limited. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The main function of the immune system is the defense against infection, being composed by the leukocytes that modulate the immune response, which can be innate or adaptive. The physical exercise can causes positive or negative alterations in the total or relative number of leukocytes. When the exercise has a low or moderate intensity it`s considered beneficial for improving the function of the cells responsible for the defense and to reduce the risk of infectious illnesses. The type 2 diabetes is related to an incapacity of the body in rightly respond to insulin, associated to an resistance to its actions. The purpose of this research was to make a study of the immune system characteristics, as well as the type 2 diabetes and the relation among both and the physical exercise. So, it was analyzed a group of type 2 diabetics coming from Diabetics House of Franca -SP, treated through a program of mix physical training. Two collections of blood were pre and post training program for the pair comparable of the participants. It was found positive alterations of the subpopulations of leukocytes that show a probable improvement of the immunological state what allows us to suggest about a possible improvement of the immunological activity, what would be measured by the activation of these cells forward to an inflammatory/infectious condition. So, we suggest that future studies involving diabetes, immune system and physical exercise be encouraged.