125 resultados para Flavor physics


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order that confinement should survive, light quarks inside hadrons have a very high acceleration and will feel a thermal bath with an Unruh temperature near 137 MeV. We show that this temperature is consistent with the experimentally observed departure from the Gottfried sum rule for the difference of the proton and neutron structure functions in deep inelastic electron scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapidity gaps may provide an adequate signature for electroweak processes at supercolliders, including the production of the Higgs particle. We show how this important issue can be studied in the dijet final states of operating proton-antiproton colliders and present quantitative predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the impact of new physics beyond the standard model to the s → dγ process, which is responsible for the short-distance contribution to the radiative decay Ω-Ξ-γ. We study three representative extensions of the standard model: namely, a one-family technicolor model, a two-Higgs-doublet model, and a model containing scalar leptoquarks. When constraints arising from the observed b→sγ transition and the upper limit on D0-D̄0 mixing are taken into account, we find no significant contributions of new physics to the s→dy process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effects induced by excited leptons at the one-loop level in the observables measured on the Ζ peak at LEP. Using a general effective Lagrangian approach to describe the couplings of the excited leptons, we compute their contributions to both oblique parameters and Ζ partial widths. Our results show that the new effects are comparable to the present experimental sensitivity, but they do not lead to a significant improvement on the available constraints on the couplings and masses of these states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mass splitting of the pseudoscalar mesons η and η′ is approached by taking into account the SU(3)-flavor symmetry breaking and annihilation effects. An extended version of the Schwinger sum rule and a mixing angle equal to -19.51° are obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nuclear medium effects in the neutrino cooling of neutron stars through the reaction channel γγ→π0 →ν Rν̄L(νLν̄R) are incorporated. Throughout the paper we discuss different possibilities of right-handed neutrinos, massive left-handed neutrinos, and standard massless left-handed neutrinos (reaction is then allowed only with medium modified vertices). It is demonstrated that multiparticle effects suppress the rate of this reaction channel in the dense hadron matter by 6-7 orders of magnitude that does not allow to decrease existing experimental upper limit on the corresponding π0νν̄ coupling. Other possibilities of the manifestation of the given reaction channel in different physical situations, e.g., in the quark color superconducting cores of the most massive neutron stars, are also discussed. We demonstrate that in the color-flavor-locked superconducting phase for temperatures T≲ 0.1-10 MeV (depending on the effective pion mass and the decay width) the process is feasibly the most efficient neutrino cooling process, although the absolute value of the reaction rate is rather small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)