164 resultados para Field Emission
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Nowadays environmental pollution can be identified as a major problem in developed and developing countries. This is the result of several factors, such as inappropriate use of natural resources, inficiente legislation and not ecological awareness. Moreover, many other procedures as incorrect use of chemicals still contributed to the worsening of the problem. In this work, we develop a working with the environmental ideals, aiming to contribute to the decomposition of organic material through decomposition of rhodamine in TiO2 thin films on a silicon substrate. The degradation performance was monitored with the aid of techniques such as atomic force microscopy, transmission electron microscopy, field emission gun scanning electron microscopy, Fourier transform spectroscopy, thermal and photocatalytic analyses
Resumo:
In this study, a composite of titanium oxide (TixOy) and carbon nanotubes multi-walled (MWCNT) was synthesized on a titanium substrate using the sol-gel method. The electrode obtained (TixOy-MWCNT/Ti) was used to the photodegradation of Carbaryl. The morphology and structure of the TixOy-MWCNT composite were characterized by scanning electron microscopy (SEM), scanning electron microscopy by field emission (FEG-SEM) and X-ray diffraction (XRD). The electrode was evaluated for degradation of Carbaryl (0.9 mmol L-1) in phosphate buffer pH 6, and using chronoamperometry by applying a potential of +1,5 V for 1 h. Using the Ultraviolet-Visible test, the absorbance at 220 nm was collected every 15 min to calculate the percentage of Cabaryl´s degradation. Can be evaluated that the Carbaryl degradation using the TixOy-MWCNT/Ti electrode was 22% more efficient when compared with the electrode without the presence of titanium oxides (MWCNT / Ti)
Resumo:
The increasing demand for electro-electronic devices, with high performance and multi-functional and the rapid advances of the nanotechnology require the development of new methods and techniques for the production and characterization of nanostructure materials and phenomenological models to describe/to predict some of its properties. The demand for multifunctionality requires, at least, new materials, that can integrate ferroelectric and magnetic properties of high technological interest. Inside of this context, multiferroics material can be considered suitable to integrate two or more physical properties of high technological interest. It can also provides new challenges in the processes of synthesis of new materials, and development of new devices with controlling and simulation of its physical properties and modeling. For this Calcium (Ca)-doped bismuth ferrite (BiFeO3) thin films prepared by using the polymeric precursor method (PPM) were characterized by X-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM), transmission electron microscopy (TEM), polarization and piezoelectric measurements.In order to study the behavior and determine which are the most important parameters to achieve the optimal property to be applied to a multiferroic materials
Resumo:
Wurtzite-structured ZnS nanostructures have been synthesized by means of a microwave-solvothermal method at 140°C using three precursors (chloride, nitrate and acetate). Different techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FT-IR) spectroscopy, ultraviolet–visible (UV–vis) absorption spectroscopy and photoluminescence (PL) measurements have been employed to characterize this material. The structure, surface morphology, chemical composition and optical properties were investigated as function of precursor. In order to complement experimental results, first principles calculations at DFT level were carried out in order to obtain the relative stability of the proposed intermediates along the formation mechanism. - See more at: http://www.eurekaselect.com/117237/article#sthash.GzvnCBTB.dpuf
Resumo:
In this paper, we report a detailed structural and electronic characterization of PbMoO4 crystals by using a conventional hydrothermal (CH) method. The samples were characterized by X-ray diffraction (XRD), Fourier transform Raman (FT-Raman), field-emission gun scanning electron microscopy (FEG-SEM) and photoluminescence (PL) measurements. In addition, first-principles quantum mechanical calculations based on the density functional theory were employed in order to understand the band structure and density of states for the PbMoO4. Analysis of both theoretical and experimental results allows to rationalize the role of order-disorder effects in the observed green PL emissions in these ordered powders.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)