205 resultados para Emperical orthogonal functions
Resumo:
We consider the real Szego polynomials and obtain some relations to certain self inversive orthogonal L-polynomials defined on the unit circle and corresponding symmetric orthogonal polynomials on real intervals. We also consider the polynomials obtained when the coefficients in the recurrence relations satisfied by the self inversive orthogonal L-polynomials are rotated. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
We show how symmetric orthogonal polynomials can be linked to polynomials associated with certain orthogonal L-polynomials. We provide some examples to illustrate the results obtained Finally as an application, we derive information regarding the orthogonal polynomials associated with the weight function (1 + kx(2))(1 - x(2))(-1/2), k > 0.
Resumo:
A mapping which relates the Wigner phase-space distribution function associated with a given stationary quantum-mechanical wavefunction to a specific solution of the time-independent Liouville transport equation is obtained. Two examples are studied.
Resumo:
Function approximation is a very important task in environments where computation has to be based on extracting information from data samples in real world processes. Neural networks and wavenets have been recently seen as attractive tools for developing efficient solutions for many real world problems in function approximation. In this paper, it is shown how feedforward neural networks can be built using a different type of activation function referred to as the PPS-wavelet. An algorithm is presented to generate a family of PPS-wavelets that can be used to efficiently construct feedforward networks for function approximation.
Resumo:
Various Green functions of the Dirac equation with a magnetic-solenoid field (the superposition of the Aharonov-Bohm field and a collinear uniform magnetic field) are constructed and studied. The problem is considered in 2+1 and 3+1 dimensions for the natural extension of the Dirac operator (the extension obtained from the solenoid regularization). Representations of the Green functions as proper time integrals are derived. The nonrelativistic limit is considered. For the sake of completeness the Green functions of the Klein-Gordon particles are constructed as well. (C) 2004 American Institute of Physics.
Resumo:
The purpose of the present study was to verify the memory exponents of power function for area in observers of different age and educational levels (elementary school, high school or undergraduate school), using the psychophysics method of magnitude estimation. For the age level I (17 to 30 years old) there was no difference among educational levels, although for the age level II (45 to 60 years old) the differences were significant. Tn the age level II, there was a tendency for greater variability of the responses for lower educational levels. The data obtained for the age level I did not show the same results, although a significant difference among the three educational levels was observed. We call conclude that the mnemonic processes present different results when we observe the answers from observers with different ages. This result leads us to suppose that the motivational factor related to the stimulus used can interact with the mnemonic processes.
Resumo:
In this paper the recurrence relations of symmetric orthogonal polynomials whose measures are related to each other in a certain way are considered. Many of the relations satisfied by the coefficients of the recurrence relations are exposed. The results are applied to obtain, for example, information regarding certain Sobolev orthogonal polynomials and regarding the measures of certain orthogonal polynomial sequences with twin periodic recurrence coefficients. (C) 2001 IMACS. Published by Elsevier B.V. B.V. All rights reserved.
Resumo:
Relation between two sequences of orthogonal polynomials, where the associated measures are related to each other by a first degree polynomial multiplication (or division), is well known. We use this relation to study the monotonicity properties of the zeros of generalized orthogonal polynomials. As examples, the Jacobi, Laguerre and Charlier polynomials are considered. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We consider a connection that exists between orthogonal polynomials associated with positive measures on the real line and orthogonal Laurent polynomials associated with strong measures of the class S-3 [0, beta, b]. Examples are given to illustrate the main contribution in this paper. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Five minute-averaged values of sky clearness, direct and diffuse indices, were used to model the frequency distributions of these variables in terms of optical air mass. From more than four years of solar radiation observations it was found that variations in the frequency distributions of the three indices of optical air mass for Botucatu, Brazil, are similar to those in other places, as published in the literature. The proposed models were obtained by linear combination of normalized Beta probability functions, using the observed distributions derived from three years of data. The versatility of these functions allows modelling of all three irradiance indexes to similar levels of accuracy. A comparison with the observed distributions obtained from one year of observations indicate that the models are able to reproduce the observed frequency distributions of all three indices at the 95% confidence level.
Resumo:
We investigate polynomials satisfying a three-term recurrence relation of the form B-n(x) = (x - beta(n))beta(n-1)(x) - alpha(n)xB(n-2)(x), with positive recurrence coefficients alpha(n+1),beta(n) (n = 1, 2,...). We show that the zeros are eigenvalues of a structured Hessenberg matrix and give the left and right eigenvectors of this matrix, from which we deduce Laurent orthogonality and the Gaussian quadrature formula. We analyse in more detail the case where alpha(n) --> alpha and beta(n) --> beta and show that the zeros of beta(n) are dense on an interval and that the support of the Laurent orthogonality measure is equal to this interval and a set which is at most denumerable with accumulation points (if any) at the endpoints of the interval. This result is the Laurent version of Blumenthal's theorem for orthogonal polynomials. (C) 2002 Elsevier B.V. (USA).
Resumo:
We prove the equivalence of many-gluon Green's functions in the Duffin-Kemmer-Petieu and Klein-Gordon-Fock statistical quantum field theories. The proof is based on the functional integral formulation for the statistical generating functional in a finite-temperature quantum field theory. As an illustration, we calculate one-loop polarization operators in both theories and show that their expressions indeed coincide.
Resumo:
We show that all Green's functions of the Schwinger and axial models can be obtained one from the other. In particular, we show that the two models have the same chiral anomaly. Finally it is demonstrated that the Schwinger model can keep gauge invariance for an arbitrary mass, dispensing with an additional gauge group integration.