149 resultados para Einstein Condensation
Resumo:
The problem of non-darcian transient film condensation adjacent to a vertical flat plate embedded in a porous medium has been considered. The governing equation for the boundary layer thickness was obtained by an integral method and solved approximately by the method of integral relations. It is shown that the results are in good agreement with those obtained exactly by the method of characteristics.
Resumo:
Bose-Einstein correlations are studied in semileptonic (WW → qq̄lv) and fully hadronic (WW → qq̄qq̄) W-pair decays with the ALEPH detector at LEP at centre-of-mass energies of 172, 183 and 189 GeV. They are compared with those made at the Z peak after correction for the different flavour compositions. A Monte Carlo model of Bose-Einstein correlations based on the JETSET hadronization scheme was tuned to the Z data and reproduces the correlations in the WW → qq̄lv events. The same Monte Carlo reproduces the correlations in the WW → qq̄qq̄ channel assuming independent fragmentation of the two W's. A variant of this model with Bose-Einstein correlations between decay products of different W's is disfavoured. (C) 2000 Published by Elsevier Science B.V.
Resumo:
We study the effects of a repulsive three-body interaction on a system of trapped ultracold atoms in a Bose-Einstein condensed state. The stationary solutions of the corresponding s-wave nonlinear Schrödinger equation suggest a scenario of first-order liquid-gas phase transition in the condensed state up to a critical strength of the effective three-body force. The time evolution of the condensate with feeding process and three-body recombination losses has a different characteristic pattern. Also, the decay time of the dense (liquid) phase is longer than expected due to strong oscillations of the mean-squared radius.
Resumo:
The atomic tunneling between two tunnel-coupled Bose-Einstein condensates (BECs) in a double-well time-dependent trap was studied. For the slowly varying trap, synchronization of oscillations of the trap with oscillations of the relative population was predicted. Using the Melnikov approach, the appearance of the chaotic oscillations in the tunneling phenomena between the condensates was confirmed.
Resumo:
It has been conjectured that at the stationary point of the tachyon potential for the D-brane-anti-D-brane pair or for the non-BPS D-brane of superstring theories, the negative energy density cancels the brane tensions. We study this conjecture using a Wess-Zumino-Witten-like open superstring field theory free of contact term divergences and recently shown to give 60% of the vacuum energy by condensation of the tachyon field alone. While the action is non-polynomial, the multiscalar tachyon potential to any fixed level involves only a finite number of interactions. We compute this potential to level three, obtaining 85% of the expected vacuum energy, a result consistent with convergence that can also be viewed as a successful test of the string field theory. The resulting effective tachyon potential is bounded below and has two degenerate global minima. We calculate the energy density of the kink solution interpolating between these minima finding good agreement with the tension of the D-brane of one lower dimension. © 2000 Elsevier Science B.V.
Resumo:
In three-dimensional trapped Bose-Einstein condensate (BEC), described by the time-dependent Gross-Pitaevskii-Ginzburg equation, we study the effect of initial conditions on stability using a Gaussian variational approach and exact numerical simulations. We also discuss the validity of the criterion for stability suggested by Vakhitov and Kolokolov. The maximum initial chirp (initial focusing defocusing of cloud) that can lead a stable condensate to collapse even before the number of atoms reaches its critical limit is obtained for several specific cases. When we consider two- and three-body nonlinear terms, with negative cubic and positive quintic terms, we have the conditions for the existence of two phases in the condensate. In this case, the magnitude of the oscillations between the two phases are studied considering sufficient large initial chirps. The occurrence of collapse in a BEC with repulsive two-body interaction is also shown to be possible.
Resumo:
The collapse of trapped Boson-Einstein condensate (BEC) of atoms in states 1 and 2 was studied. When the interaction among the atoms in state i was attractive the component i of the condensate experienced collapse. When the interaction between an atom in state 1 and state 2 was attractive both components experienced collapse. The time-dependant Gross-Pitaevski (GP) equation was used to study the time evolution of the collapse. There was an alternate growth and decay in the number of particles experiencing collapse.
Resumo:
The conditions for the existence of autosolitons were considered in trapped Bose-Einstein condensates with attractive atomic interactions. The expression for the parameters of the autosoliton was derived using the time-dependent variational approach for the nonconservative 3-dimensional Gross-pitaevskii equation and their stability was checked. The results were in agreement with the exact numerical calculations. It was shown that the transition from unstable to stable point solely depends on the magnitude of the parameters.
Resumo:
Bose-Einstein condensates with attractive interatomic interactions undergo collective collapse beyond a critical number. We show theoretically that if the low-lying collective modes of the condensate are excited, the radial breathing mode further destabilizes the condensate. Remarkably, excitation of the quadrupolar surface mode causes the condensate to become more stable, imparting quasiangular momentum to it. A significantly larger number of atoms may then occupy the condensate. Efforts are under way for the experimental realization of these effects. ©2001 The American Physical Society.
Resumo:
A numerical study of the time-dependent Gross-Pitaevskii equation for an axially symmetric trap to obtain insight into the free expansion of vortex states of BEC is presented. As such, the ratio of vortex-core radius to radia rms radius xc/xrms(<1) is found to play an interesting role in the free expansion of condensed vortex states. the larger this ratio, the more prominent is the vortex core and the easier is the possibility of experimental detection of vortex states.
Resumo:
Numerical simulations based on the time-dependent mean-field Gross-Pitaevskii equation was performed to explain the dynamics of collapsing and exploding Bose-Einstein condensates (BEC) of 85Rb atoms. The atomic interaction was manipulated by an external magnetic field via a Feshbach resonance. On changing the scattering length of atomic interaction from a positive to a large negative value, the condensate collapsed and ejected atoms via explosion.
Resumo:
The dynamics of small repulsive Bose-Einstein condensed vortex states of 85Rb atoms in a cylindrical traps with low angular momentum was studied. The time-dependent mean-field Gross-Pitaevskii equation was used for the study. The condensates collapsed and atoms ejected via explosion and a remnant condensate with a smaller number of atoms emerges that survived for a long time.
Resumo:
A study was conducted on the dynamics of 2D and 3D Bose-Einstein condensates in the case when the scattering length in the Gross-Pitaevskii (GP) equation which contains constant (dc) and time-variable (ac) parts. Using the variational approximation (VA), simulating the GP equation directly, and applying the averaging procedure to the GP equation without the use of the VA, it was demonstrated that the ac component of the nonlinearity makes it possible to maintain the condensate in a stable self-confined state without external traps.
Resumo:
The dynamics of a bright matter wave soliton in a quasi one-dimensional Bose-Einstein condensate (BEC) with a periodically rapidly varying time trap is considered. The governing equation is based on averaging the fast modulations of the Gross-Pitaevskii (GP) equation. This equation has the form of a GP equation with an effective potential of a more complicated structure than an unperturbed trap. In the case of an inverted (expulsive) quadratic trap corresponding to an unstable GP equation, the effective potential can be stable. For the bounded space trap potential it is showed that bifurcation exists, i.e. the single-well potential bifurcates to the triple-well effective potential. The stabilization of a BEC cloud on-site state in the temporary modulated optical lattice is found. This phenomenon is analogous to the Kapitza stabilization of an inverted pendulum. The analytical predictions of the averaged GP equation are confirmed by numerical simulations of the full GP equation with rapid perturbations.