171 resultados para Dynamic Contact Angle


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Regenerative therapies using biomaterials require accurate information on interactions between the implanted material and the human body. To improve the process of bone regeneration it is necessary to obtain a better understanding of the influence of the surfaces on the early stages of osseointegration. This work aims to investigate the dynamic interaction between simulated body fluid (SBF) and titanium surfaces (Ti cp) immediately after their first contact. METHODS: Ti cp samples were passed through physicochemical treatments after immersion in acid solution, alkaline solution and solutions containing TiO2 and Ca2+, to obtain three different surfaces. These were characterized by electron microscopy and free energy estimates. The evaluation of the interaction with SBF was performed by measuring the dynamic contact angles after contacting the surfaces. RESULTS: The effects of SBF wettability were more significant on surfaces according to high energy estimates. A comparative analysis of the three types of surfaces showed that fluid spreading was greater in samples with greater polar components, indicating that the surface nature influences interactions in the early stages of osseointegration. CONCLUSION: The results indicate the influence of polar interactions in the dynamic wettability of the SBF. It is possible that these interactions can also influence cellular viability on surfaces. Based on these results, new experiments are being designed to improve the presented methodology as a tool for the evaluation of biomaterials without the need for in vivo experiments.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Generally most plastic materials are intrinsically hydrophobic, low surface energy materials, and thus do not adhere well to other substances. Surface treatment of polymers by discharge plasmas is of great and increasing industrial application because it can uniformly modify the surface of sample without changing the material bulk properties and is environmentally friendly. The plasma processes that can be conducted under ambient pressure and temperature conditions have attracted special attention because of their easy implementation in industrial processing. Present work deals with surface modification of polycarbonate (PC) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatment was performed in a parallel plate reactor driven by a 60Hz power supply. The DBD plasmas at atmospheric pressure were generated in air and nitrogen. Material characterization was carried out by contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The surface energy of the polymer surface was calculated from contact angle data by Owens-Wendt method using distilled water and diiodomethane as test liquids. The plasma-induced chemical modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. Due to these surface modifications the DBD-treated polymers become more hydrophilic. Aging behavior of the treated samples revealed that the polymer surfaces were prone to hydrophobic recovery although they did not completely recover their original wetting properties.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present work aimed to evaluate the volumetric distribution profiles, droplet spectra, surface tension, contact angle of droplet and the spraying liquid deposition over the peanut leaves (Arachis hypogaea L.), under artificial rain, in comparison with deposition without rain, using two hydraulic nozzle models of plain fan and insecticide spraying liquids with and without adjuvants addition. It were used a patternator for volumetric distribution analysis, a laser particles analyzer to evaluate droplet spectra produced by SF 110015 and XR 110015 nozzles and tensiometer for droplet tension and contact angle. The spraying liquids evaluated were: water, lambda-cialotrina, lambda-cialotrina + nitrogen fertilizer and lambda-cialotrina + mineral oil. All experiments followed a completely randomized design. Data were submitted to variance analysis by F test and the means comparisons by Scott-Knott test at 5% of probability. According to the results, it must be considered the maximum spacing in spray boom usage of 50 and 90 cm between the nozzles SF110015 and XR110015, respectively. The adjuvants effects on droplet spectra have shown addicted to the nozzle and the product used, and the adjuvants addition to the spraying liquid affected the potential risk of drift; The Volumetric Median Diameter (VMD) of produced droplets by nozzles filled into thin class and were not influenced by the adjuvants. The nitrogen fertilizer adjuvant may be indicated to promote improvements on coverage and droplet deposition on target.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A adesão longitudinal continua a representar um dos maiores desafios da Odontologia moderna. Uma nova proposta para o estabelecimento do equilíbrio da adesão aos tecidos dentários surge, baseada na observação dos resultados obtidos com a tecnologia Grander para revitalização da água. Objetiva-se com o estudo verificar a influência dessa tecnologia nas propriedades físicas de dois sistemas adesivos (convencional e autocondicionante) à partir da medição da tensão superficial e do ângulo de contato; e avaliar a formação e a qualidade da camada híbrida em dentina humana e bovina. A tensão superficial de quatro diferentes líquidos (água, Single Bond- 3M, Primer do Clearfil SE Bond -Kuraray, e Bond do Clearfil SE-Kuraray), foi medida antes e após a modificação pelo procedimento Grander em aparelho goniômetro (Ramé-hart). O ângulo de contato com três substratos distintos (placa de titânio, dentina humana e dentina bovina), foi medido para os quatro líquidos também antes e após a modificação pelo procedimento Grander, também em goniômetro. A formação e qualidade da camada híbrida, foi avaliada em MEV, a partir da confecção de corpos de prova dos substratos humano e bovino, devidamente embutidos, preparados em lixas de variada granulação até a exposição de dentina, submetidos ao procedimento adesivo (SB ou CSEB) normal ou grander modificado, recebendo ao final dupla camada de resina composta Z250-3M, fotopolimerizada por 40s. Após armazenamento em estufa bacteriológica por 24h, os procedimentos para análise ao MEV foram realizados (fixação, desidratação, secagem e metalização). A estatística de Análise de Variância ANOVA e Teste de Tukey 5% revelou que: houve redução estatisticamente significante da tensão superficial para todos os líquidos Grander modificados; houve redução estatisticamente... (Resumo completo, clicar acesso eletrônico abaixo)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work we report the surface modification of different engineering polymers, such as, polyethylene terephthalate (PET), polyethylene (PE) and polypropylene (PP) by an atmospheric pressure plasma jet (APPJ). It was operated with Ar gas using 10 kV, 37 kHz, sine wave as an excitation source. The aim of this study is to determine the optimal treatment conditions and also to compare the polymer surface modification induced by plasma jet with the one obtained by another atmospheric pressure plasma source the dielectric barrier discharge (DBD). The samples were exposed to the plasma jet effluent using a scanning procedure, which allowed achieving a uniform surface modification. The wettability assessments of all polymers reveal that the treatment leads to reduction of more than 40 degrees in the water contact angle (WCA). Changes in surface composition and chemical bonding were analyzed by x-ray photoelectron spectroscopy (XPS) and Fourier-Transformed Infrared spectroscopy (FTIR) that both detected incorporation of oxygen-related functional groups. Surface morphology of polymer samples was investigated by Atomic Force Microscopy (AFM) and an increase of polymer roughness after the APPJ treatment was found. The plasma-treated polymers exhibited hydrophobic recovery expressed in reduction of the O-content of the surface upon rinsing with water. This process was caused by the dissolution of low molecular weight oxidized materials (LMWOMs) formed on the surface as a result of the plasma exposure. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amorphous silicon carbonitride (a-SiCN:H) films were deposited from hexamethyldisilazane (HMDSN) organic compounds via radio-frequency (RF) glow discharges. Afterwards the films were bombarded, from 15 to 60 min, with nitrogen ions using Plasma Immersion Ion Implantation (PIII) technique. X-ray photoelectron spectroscopy (XPS) showed that O-containing groups increased, while C-C and/or C-H groups decreased with treatment time. This result indicates chemical alterations of the polymeric films with the introduction of polar groups on the surface, which changes the surface wettability. In fact, the hydrophobic nature of a-SiCN:H films (contact angle of 100 degrees) was changed by nitrogen ion implantation and, and after aging in atmosphere air, all samples preserved the hydrophilic character (contact angle <80 degrees) independently of treatment time. The exposure of the films to oxygen plasma was performed to evaluate the etching rate, which dropped from 24% to 6% while the implantation time increased from 15 to 60 min. This data suggests that Pill increased the film structure strength, probably due to crosslinking enhancement of polymeric chains. Therefore, the treatment with nitrogen ions via Pill process was effective to modify the wettability and oxidation resistance of a-SiCN:H films. (C) 2014 Elsevier Ltd. All rights reserved.