127 resultados para Dielectric permittivities
Resumo:
Sr0.5Ba0.5Bi2Nb2O 9 ceramic was prepared by a conventional solid state reaction method and studied using X-ray powder diffraction and dielectric measurements. At room temperature, an orthorhombic structure was confirmed and their parameters were obtained using the Rietveld method. Dielectric properties were studied in a broad range of temperatures and frequencies. Typical relaxor behaviour was observed with strong dispersion of the complex relative dielectric permittivity. The temperature of the maximum dielectric constant Tm decreases with increasing frequency, and shifts towards higher temperature side. The activation energy Ea≈0·194±0·03 eV and freezing temperature Ta≈371±2 K values were found using the Vogel-Fulcher relationship. Conduction process in the material may be due to the hopping of charge carriers at low temperatures and small polarons and/or singly ionised oxygen vacancies at higher temperatures. © 2010 Maney Publishing.
Resumo:
The dielectric properties of the 0.65[Pb(Mg 1/3Nb 2/3)O 3]-0.35PbTiO 3 ferroelectric ceramic composition were investigated viewing the capability to be used for tunable microwave applications. The dielectric response has been studied for three selected temperatures (300 K, 370 K and 400 K), below the paraelectric- ferroelectric phase transition temperature, as a function of the applied 'bias' electric field. The obtained dielectric tunability was found to be around 60 %, under an electric field of 19 kV/cm, which makes the studied ceramic composition an excellent candidate for application in the electro-electronic industry, as tunable devices. © 2010 IEEE.
Resumo:
Dielectric spectroscopy was used in this study to examine polycrystalline vanadium and tungstendoped BaZr 0.1Ti 0.90O 3 (BZT10:2V and BZT10:2W) ceramics obtained by the mixed oxide method. According to X-ray diffraction analyses, addition of vanadium and tungsten lead to ceramics free of secondary phases. SEM analyses reveal that both dopants result in slower oxygen ion motion and consequently lower grain growth rate. Temperature dependence dielectric study showed normal ferroelectric to paraelectric transition well above the room temperature for the BZT10 and BZT10:2V ceramics. However, BZT10:2W ceramic showed a relaxor-like behavior near phase transition characterized by the empirical parameter γ. Piezoelectric force microscopy images reveals that the piezoelectric coefficient is strongly influenced by type of donor dopant suggesting promising applications for dynamic random access memories and data-storage media. Copyright © 2010 American Scientific Publishers All rights reserved.
Resumo:
For microwave applications, including mobile and satellite communications, ceramic resonators should have a high dielectric constant, low dielectric losses, and high frequency stability. In this sense, TiO2-ZrO 2 ceramics have been investigated as a function of sintering behavior, phase composition, and microstructure. The ceramics were densified reaching a value of about 86% of theoretical density at 1400°C sintering temperature. The ceramics are prepared by mixing raw materials with the following TiO2-ZrO2 weight % ratio: 100 to 0, 90 to 10, and 80 to 20, respectively. The measured dielectric constants are between 79 and 88 values, while the quality factor due to dielectric losses are between 2820 and 5170. These results point out the influence of Ti/Zr ratio on controlling the dielectric properties. © (2010) Trans Tech Publications.
Resumo:
Dielectric ceramics have been widely investigated and used for microwave applications such as resonators and filters. The present study deals with the influence of sintering temperature on microwave dielectric properties of TiO2 ceramics with 10, 20, and 30 wt% ZrO2. Three compositions have been developed through mixing procedures and then tested for each sintering temperature: 1500 and 1400°C. X-ray diffraction and scanning electron microscopy are carried out aiming to explain the ceramic behavior of each sample. The dielectric constants of different ceramics for both temperatures varied from 85.4 to 62.6, while their quality factor due to dielectric losses varied from 3110 to 1630. The Q decrease is attributed to the non uniform grain growth and to the obtained crystalline phases. The best microwave parameters were obtained for the ceramics sintered at 1400°C, which can be applied in microwave circuits as dielectric resonators. © (2010) Trans Tech Publications.
Resumo:
In this work, air dielectric barrier discharge (DBD) operating at the line frequency (60 Hz) or at frequency of 17 kHz was used to improve the wetting properties of polypropylene (PP). The changes in the surface hydrophilicity were investigated by contact angle measurements. The plasma-induced chemical modifications of PP surface were studied by X-ray photoelectron spectroscopy (XPS) and Fourier-transformed infrared spectroscopy (FTIR). The polymer surface morphology and roughness before and after the DBD treatment were analyzed by atomic force microscopy (AFM). To compare the plasma treatment effect at different frequencies the variation of the contact angle is presented as a function of the deposited energy density. The results show that both DBD treatments leaded to formation of water-soluble low molecular weight oxidized material (LMWOM), which agglomerated into small mounts on the surface producing a complex globular structure. However, the 60 Hz DBD process produced higher amount of LMWOM on the PP surface comparing to the 17 kHz plasma treatment with the same energy dose. The hydrophilic LMWOM is weakly bounded to the surface and can be easily removed by polar solvents. After washing the DBD-treated samples in de-ionized water their surface roughness and oxygen content were reduced and the PP partially recovered its original wetting characteristics. This suggested that oxidation also occurred at deeper and more permanent levels of the PP samples. Comparing both DBD processes the 17 kHz treatment was found to be more efficient in introducing oxygen moieties on the surface and also in improving the PP wetting properties. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer-ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer-ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (ε r) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer-ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors. © 2013 Elsevier B.V.
Resumo:
This paper reports the influence of Sr- and Ca-substitution on the structural and ferroelectric properties of Pb1-xSrxZr0.40Ti0.60O3 (PSZT) and Pb1-xCaxZr0.40Ti0.60O3 (PCZT) ceramic systems. The dielectric measurements show that these substitutions cause a diffuse behavior in the dielectric permittivity curves for all samples. According to the X-ray absorption near-edge structure (XANES) spectra collected at Ti K- and LIII-edge, when Pb was replaced by Sr or Ca, a decrease in the local distortion around Ti atoms in the TiO6 octahedron could be observed. The O K-edge XANES spectra also revealed that the hybridization between O 2p and Pb 6sp states decreased as the amount of Sr or Ca atoms increased. Based on these results, it was possible to ascertain that the ferroelectric behavior in PSZT and PCZT samples bears a close correlation to the hybridization weakening between O 2p and Pb 6 sp states. © 2013 by American Scientific Publishers.
Resumo:
Generally most plastic materials are intrinsically hydrophobic, low surface energy materials, and thus do not adhere well to other substances. Surface treatment of polymers by discharge plasmas is of great and increasing industrial application because it can uniformly modify the surface of sample without changing the material bulk properties and is environmentally friendly. The plasma processes that can be conducted under ambient pressure and temperature conditions have attracted special attention because of their easy implementation in industrial processing. Present work deals with surface modification of polycarbonate (PC) by a dielectric barrier discharge (DBD) at atmospheric pressure. The treatment was performed in a parallel plate reactor driven by a 60Hz power supply. The DBD plasmas at atmospheric pressure were generated in air and nitrogen. Material characterization was carried out by contact angle measurements, and X-ray photoelectron spectroscopy (XPS). The surface energy of the polymer surface was calculated from contact angle data by Owens-Wendt method using distilled water and diiodomethane as test liquids. The plasma-induced chemical modifications are associated with incorporation of polar oxygen and nitrogen containing groups on the polymer surface. Due to these surface modifications the DBD-treated polymers become more hydrophilic. Aging behavior of the treated samples revealed that the polymer surfaces were prone to hydrophobic recovery although they did not completely recover their original wetting properties.
Elucidating Redox-Level Dispersion and Local Dielectric Effects within Electroactive Molecular Films
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ca-1 -xSmxCu3Ti4O12 (x = 0.0, 0.2, 03) electronic ceramics were fabricated via the chemical route using metal nitrate solutions in order to improve the dielectric properties of this ceramic. X-ray diffraction (XRD) analysis indicated the formation of a single CaCu3Ti4O12 (CCTO). Grain size of the samples doped with Sm3+ was in the range of 1-2 mu m, as opposed to 50-100 mu m in the pure samples of CCTO. The cutoff frequency with the doping was remarkably shifted, from 1 MHz (pure CCTO) to 10 MHz (doped CCTO). Meanwhile, the real dielectric (epsilon(r)) and imaginary dielectric (epsilon '') constants showed a decrease as the doping was increased. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)