146 resultados para Cytotoxic Metabolites
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: To evaluate the antimicrobial activity of Arctium lappa L. extract on Staphylococcus aureus, S. epidermidis, Streptococcus mutans, Candida albicans, C. tropicalis and C. glabrata. In addition, the cytotoxicity of this extract was analyzed on macrophages (RAW 264.7).Design: By broth microdilution method, different concentrations of the extract (250-0.4 mg/mL) were used in order to determine the minimum microbicidal concentration (MMC) in planktonic cultures and the most effective concentration was used on biofilms on discs made of acrylic resin. The cytotoxicity A. lappa L. extract MMC was evaluated on RAW 264.7 by MTT assay and the quantification of IL-1 beta and TNF-alpha by ELISA.Results: The most effective concentration was 250 mg/mL and also promoted significant reduction (log(10)) in the biofilms of S. aureus (0.438 +/- 0.269), S. epiderrnidis (0.377 +/- 0.298), S. mutans (0.244 +/- 0.161) and C. albicans (0.746 +/- 0.209). Cell viability was similar to 100%. The production of IL-beta was similar to the control group (p > 0.05) and there was inhibition of TNF-alpha (p < 0.01).Conclusions: A. lappa L. extract was microbicidal for all the evaluated strains in planktonic cultures, microbiostatic for biofilms and not cytotoxic to the macrophages. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Compounds released into the environment can induce genetic alterations in living organisms. A group of chemicals that shows proven toxicity is the pesticides, and the insecticides are the most harmful. The insecticides of the family phenylpyrazole have wide application both in agriculture and in homes. Fipronil, an insecticide of this chemical group, is widely used in various cultures and in homes, mainly for fighting fleas and ticks on dogs and cats. The use of fipronil may represent a risk to man and the environmental health, since this pesticide can potentially induce cell death, regardless of cell type. Fipronil, when in contact with the environment, can undergo various degradation processes, including photodegradation. The toxic effect of one of its metabolites derived from photodegradation, sulfone-fipronil, is approximately 20 fold as great as fipronil itself. The A. cepa test system was used to evaluate cytotoxic, genotoxicity and mutagenic effects of fipronil before and after phptodegradation. Seeds of Allium cepa were subjected to solutions of fipronil, pre-exposed or not exposed to degradation by sunlight. The germination tests were conducted both under the effect of light and in the dark. We evaluated the cumulative potential of this insecticide using 48 and 72-hours recovery tests. The results showed that when fipronil was previously exposed to the sun, it presented a greater genotoxic and mutagenic potential, showing that the metabolites formed by photodegradation can show more harmfull effects
Resumo:
Processo FAPESP