147 resultados para Covariant quark model
Resumo:
The ground state masses and binding energies of the nucleon, lambda0, lambdac+ , lambdab0 are studied within a constituent quark QCD-inspired light-front model. The light-front Faddeev equations for the Qqq composite spin 1/2 baryons, are derived and solved numerically. The experimental data for the masses are qualitatively described by a flavor independent effective interaction.
Resumo:
A quark-diquark approximation is used to investigate the mass spectroscopy of the spin-1/2 baryons belonging to the SU(3)-flavor group in a nonrelativistic potential approach. The baryon spectra obtained are confronted with relativistic results and experimental data. Root-mean-square radii are also calculated. © 1993 Springer-Verlag.
Resumo:
The phenomenology of a QCD-Pomeron model based on the exchange of a pair of non-perturbative gluons, i.e. gluon fields with a finite correlation length in the vacuum, is studied in comparison with the phenomenology of QCD chiral symmetry breaking, based on non-perturbative solutions of Schwinger-Dyson equations for the quark propagator including these non-perturbative gluon effects. We show that these models are incompatible, and point out some possibles origins of this problem.
Resumo:
We consider the contributions of the exotic quarks and gauge bosons to the mass difference between the short- and the long-lived neutral kaon states in the SU(3)C×SU(3)L×U(1)N model. The lower bound MZ′∼14 TeV is obtained for the extra neutral gauge boson Z′0. Ranges for values of one of the exotic quark masses and quark mixing parameters are also presented.
Resumo:
We show that it is possible to implement soft superweak CP violation in the context of a 3-3-1 model with only three triplets. All CP violation effects come from the exchange of singly and doubly charged scalars. We consider the implication of this mechanism in the quark and lepton sectors. In particular it is shown that, in this model, as in most of those which incorporate scalar mediated CP violation, it is possible to have large electric dipole moments for the muon and the tau lepton while keeping small those of the electron and neutron. The CKM mixing matrix is real at the tree level but gets a phase at the 1-up loop level. ©1999 The American Physical Society.
Resumo:
We show that it is possible to implement soft superweak CP violation in the context of a 3-3-1 model with only three triplets. All CP violation effects come from the exchange of singly and doubly charged scalars. We consider the implication of this mechanism in the quark and lepton sectors. In particular it is shown that, in this model, as in most of those which incorporate scalar mediated CP violation, it is possible to have large electric dioole moments for the muon and the tau lepton while keeping small those of the electron and neutron. The CKM mixing matrix is real at the tree level but gets a phase at the 1-up loop level. ©1999 The American Physical Society.
Resumo:
Using pure spinors, the superstring is covariantly quantized. For the first time, massless vertex operators are constructed and scattering amplitudes are computed in a manifestly ten-dimensional super-Poincaré covariant manner. Quantizable non-linear sigma model actions are constructed for the superstring in curved backgrounds, including the AdS 5 × S 5 background with Ramond-Ramond flux.
Resumo:
The leading-twist valence-quark distribution function in the pion is obtained at a low normalization scale of an order of the inverse average size of an instanton pc. The momentum dependent quark mass and the quark-pion vertex are constructed in the framework of the instanton liquid model, using a gauge invariant approach. The parameters of instanton vacuum, the effective instanton radius and quark mass, are related to the vacuum expectation values of the lowest dimension quark-gluon operators and to the pion low energy observables. An analytic expression for the quark distribution function in the pion for a general vertex function is derived. The results are QCD evolved to higher momentum-transfer values, and reasonable agreement with phenomenological analyses of the data on parton distributions for the pion is found. ©2000 The American Physical Society.
Resumo:
The reduction of the two-fermion Bethe-Salpeter equation in the framework of light-front dynamics is studied for the Yukawa model. It yields auxiliary three-dimensional quantities for the transition matrix and the bound state. The arising effective interaction can be perturbatively expanded in powers of the coupling constant gs allowing a defined number of boson exchanges; it is divergent and needs renormalization; it also includes the instantaneous term of the Dirac propagator. One possible solution of the renormalization problem of the boson exchanges is shown to be provided by expanding the effective interaction beyond single boson exchange. The effective interaction in ladder approximation up to order g4 s is discussed in detail. It is shown that the effective interaction naturally yields the box counterterm required to be introduced ad hoc previously. The covariant results of the Bethe-Salpeter equation can be recovered from the corresponding auxiliary three-dimensional quantities.
Resumo:
A direct connection between physical parameters of general two-Higgs-doublet model (2HDM) potentials after electroweak symmetry breaking (EWSB) and the parameters that define the potentials before EWSB is established. These physical parameters, such as the mass matrix of the neutral Higgs bosons, have well-defined transformation properties under basis transformations transposed to the fields after EWSB. The relations are also explicitly written in a basis covariant form. Violation of these relations may indicate models beyond 2HDMs. In certain cases the whole potential can be defined in terms of the physical parameters. The distinction between basis transformations and reparametrizations is pointed out. Some physical implications are discussed. © 2008 The American Physical Society.
Resumo:
We report the combination of recent measurements of the helicity of the W boson from top quark decay by the CDF and D0 collaborations, based on data samples corresponding to integrated luminosities of 2.7-5.4fb -1 of pp̄ collisions collected during Run II of the Fermilab Tevatron collider. Combining measurements that simultaneously determine the fractions of W bosons with longitudinal (f 0) and right-handed (f +) helicities, we find f 0=0.722±0.081[±0.062(stat)±0.052(syst)] and f +=-0.033±0.046[±0.034(stat)±0.031(syst)]. Combining measurements where one of the helicity fractions is fixed to the value expected in the standard model, we find f 0=0.682±0. 057[±0.035(stat)±0.046(syst)] for fixed f + and f +=-0.015±0.035[±0.018(stat)±0.030(syst)] for fixed f 0. The results are consistent with standard model expectations. © 2012 American Physical Society.
Resumo:
Using data collected with the D0 detector at the Fermilab Tevatron Collider, corresponding to 5.3fb -1 of integrated luminosity, we search for violation of Lorentz invariance by examining the tt̄ production cross section in lepton+jets final states. We quantify this violation using the standard-model extension framework, which predicts a dependence of the tt̄ production cross section on sidereal time as the orientation of the detector changes with the rotation of the Earth. Within this framework, we measure components of the matrices (c Q) μν33 and (c U) μν33 containing coefficients used to parametrize violation of Lorentz invariance in the top quark sector. Within uncertainties, these coefficients are found to be consistent with zero. © 2012 American Physical Society.
Resumo:
We present a search for the standard model (SM) Higgs boson produced in association with a Z boson in 9.7fb -1 of pp̄ collisions collected with the D0 detector at the Fermilab Tevatron Collider at √s=1.96TeV. Selected events contain one reconstructed Z→e +e - or Z→μ +μ - candidate and at least two jets, including at least one jet identified as likely to contain a b quark. To validate the search procedure, we also measure the cross section for ZZ production in the same final state. It is found to be consistent with its SM prediction. We set upper limits on the ZH production cross section times branching ratio for H→bb̄ at the 95% C.L. for Higgs boson masses 90≤M H≤150GeV. The observed (expected) limit for M H=125GeV is 7.1 (5.1) times the SM cross section. © 2012 American Physical Society.
Resumo:
We present a search for the standard model Higgs boson in final states with a charged lepton (electron or muon), missing transverse energy, and two or three jets, at least one of which is identified as a b-quark jet. The search is primarily sensitive to WH→ νbb̄ production and uses data corresponding to 9.7fb -1 of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp̄ Collider at √s=1.96TeV. We observe agreement between the data and the expected background. For a Higgs boson mass of 125 GeV, we set a 95% C.L. upper limit on the production of a standard model Higgs boson of 5.2×σ SM, where σ SM is the standard model Higgs boson production cross section, while the expected limit is 4.7×σ SM. © 2012 American Physical Society.
Resumo:
A measurement of the single-top-quark t-channel production cross section in pp collisions at √s=7 TeV with the CMS detector at the LHC is presented. Two different and complementary approaches have been followed. The first approach exploits the distributions of the pseudorapidity of the recoil jet and reconstructed top-quark mass using background estimates determined from control samples in data. The second approach is based on multivariate analysis techniques that probe the compatibility of the candidate events with the signal. Data have been collected for the muon and electron final states, corresponding to integrated luminosities of 1.17 and 1.56 fb-1, respectively. The single-top-quark production cross section in the t-channel is measured to be 67.2±6.1 pb, in agreement with the approximate next-to-next-to-leading- order standard model prediction. Using the standard model electroweak couplings, the CKM matrix element |V tb| is measured to be 1.020 ± 0.046 (meas.) ± 0.017 (theor.). © 2012 CERN for the benefit of the CMS collaboration.