123 resultados para Conformal Antenas
Resumo:
Radiotherapy is a branch of medical physics related to the treatment of malignant neoplasm, being an important instrument in the fight against cancer, when combined with the effort of a multidisciplinary team, composed of, physicians, physicists, nurses and technicians. Every year more than 3.5 million new cases of cancer are recorded in the world, being the prostate cancer responsible for approximately 25% of this amount (INCA and IARC, 2008). In this type of cancer, radiotherapy is a method indicated for treatement. The technological advance in this area over years has allowed a greater accuracy in the tumor location, more conformation of the radiation beam around the tumor, reducing the dose in healthy tissues and a consequent dose increase on treatment (Bedford et al., 1999). A radiotherapy planning, in which the physicist develops an important role, is composed of several steps, including choosing the best configuration of treatment beams. This choice has a close relationship with success of therapy and is critical to achieve the best distribution of dose inside the tumor and expose the least as possible the healthy tissue to radiation. In this work, two options for setting up camps in the first phase in a treatment of prostate cancer were simulated in computer planning: 4 fields orthogonal or “Box” with gantry angles in 00, 1800, 2700 e 90° and 4 fields angled or “X” (1350, 450, 3150 e 2250). The percentage of the rectal volume exposed to 40, 50, 60, 72 and 76 Gy should be limited to 60, 50, 25, 15 and 5% respectively (Greco et al., 2003). The femoral toxicity have limited dose by 70% of the total dose prescribed in a prostate treatment (Bedford et al., 1999). The planning of 27 patients with prostate adenocarcinoma submitted to 3D conformal radiotherapy were accompanied. As a result, it was assessed that the best TCP (tumor control probability)... (Complete abstract click electronic access below)
Resumo:
As abelhas Apis mellifera africanizadas são consideradas importantes agentes polinizadores que estão freqüentemente expostos à ação tóxica de inseticidas aplicados em cultivos. O imidaclopride é um inseticida sistêmico do grupo dos neonicotinóides e atua como agonista da acetilcolina nas sinapses do sistema nervoso central. Em abelhas foi verificado, através do método de resposta de extensão da probóscide (REP), que doses subletais de imidaclopride provocam deficiência no aprendizado olfatório e prejudicam a memória. A proteína Fos, expressa em neurônios, tem sua transcrição alterada por diversos estímulos como estresse, lesões, exposição a toxinas ou a predadores. Dessa forma, este trabalho teve por objetivo avaliar os efeitos neurotóxicos do inseticida imidaclopride, em operárias de Apis mellifera africanizadas, através da análise da expressão de Fos. Abelhas recém-emergidas e campeiras foram tratadas com 10, 20, 40 e 80 ng/abelha de imidaclopride e seus cérebros dissecados 15 minutos, 30 minutos, 1 hora e 4 horas após a ingestão do composto. Houve uma marcação positiva para Fos nos ocelos e na região dos olhos, principalmente na lâmina e na retina. Tal resultado era esperado, uma vez que o as abelhas foram expostas a luminosidade, durante a realização dos ensaios. Os lobos antenais são constituídos por prolongamentos de células sensoriais das antenas e pelos neurônios motores e os corpos pedunculados são tidos como os centros de processamento dos estímulos sensoriais recebidos pelos olhos e pelas antenas, assim, esperava-se que houvesse marcação positiva nestas regiões. Porém isto não foi observado no presente trabalho. Analisando-se os valores quantitativos da expressão da proteína Fos percebeu-se que não houve um padrão de ...(Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Medical Physics has been reaching an important role among several lines in Science, providing means for the improvement of several theories and procedures. Currently, its main application is related with the use of ionizing radiations, specially, in treatment procedures such as Radiotherapy. Radiosurgery is a Radiotherapy technique which consists in administering a single tumoricidal dose of radiation exclusively to the tumorous lesion. It becomes then an interesting alternative to surgical treatment, mainly in cerebral metastases, which are the most frequent cerebral tumors in the central nervous system. The radio neurosurgical team works out a planning for the Radiosurgery treatment, aiming for obtaining an appropriate ideal treatment for each case. For the working out of this treatment planning, Computed Tomography images of the region to be treated are obtained, digitalized and later, fused with nuclear magnetic resonance images. Through these images, critical structures, organs at risk and lesions are localized. After this, calculations are made to determine three-dimensional positions of isocenters, isodose curves, prescribed dose, collimators sizes, position, numbers and respective weight of isocentric conformal fields, and others. The treatment planning is commonly based in desired levels of dose for specific types of tumors and organs at risk concerning the irradiated region. Theses levels of dose are chosen in a way that a high probability of cure may be achieved and meanwhile, that the probability of complications, in whichever organ at risk, may be minimal. Thus, many researches have been carried out, showing that mathematical techniques may help to obtain an optimal planning for the treatment of cerebral metastases. Among the methods of optimization in the study...(Complete abstract click electronic access below)
Resumo:
In this paper expounds on the major phases or generations of the evolutionary process of wireless mobile communication, emphasizing their characteristics and changes over time. The main benefit of this process is the rate of data transfer remembering capacity spectral and methods of harnessing and improving its efficiency. The current network today is 4G and the technologies developed over the following requirements of the ITU are: Long Term Evolution Advanced (LTE-Advanced) and WirelessMAN-Advanced as part of the WiMAX IEEE 802.16m also described in this graduate work
Resumo:
This work describes the production and characterization of a selective membrane useful for electronic devices. The membrane was a composite made by a thin film of plasma-polymerized HFE (methyl nonafluoro(iso)butyl ether) immersed in plasma-polymerized HMDS (hexamethyldisilazane) film, a third phase being 5 µm starch particles included in this matrix. The film was deposited on silicon substrates and its physical, chemical and adsorption characteristics were determined. Infrared and x-ray photoelectron spectroscopy analyses showed fluorine and carboxyl groups on the bulk and the surface, respectively. SEM results indicate the film is conformal even if starch is present. Optical microscopy analysis showed good resistance toward acid and base solutions. Quartz crystal microbalance indicated adsorption of polar organic compounds on ppm range. This thin film is environment-friendly and can be used as a protective layer or in electronic devices due to adsorption of volatile organic compounds.
Resumo:
This work evaluates fluorinated thin films and their composites for sensor development. Composites were produced using 5 µm starch particles and plasma films obtained from organic fluorinated and silicon compounds reactants. Silicon wafers and aluminum trenches were used as substrates. Film thickness, refractive index and chemical structure were also determined. Scanning electron microscopy shows conformal deposition on aluminum trenches. Films deposited on silicon were exposed to vapor of volatile organic compounds and CV curves were obtained. A qualitative model (FemLab 3.2® program) was proposed for the electronic behavior. These environmentally correct films can be used in electronic devices and preferentially reacted to polar compounds. Nonetheless, due to the difficulty in signal recovery, these films are more effective in one-way sensors, in sub-ppm range.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We investigate the causal structure of general nonlinear electrodynamics and determine which Lagrangians generate an effective metric conformal to Minkowski. We also prove that there is only one analytic nonlinear electrodynamics not presenting birefringence.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We quantize the superstring on the AdS2 × S2 background with Ramond-Ramond flux using a PSU(1,1\2)/U(1) × U(1) sigma model with a WZ term. One-loop conformal invariance of the model is guaranteed by a general mechanism which holds for coset spaces G/H where G is Ricci-flat and H is the invariant locus of a ℤ4 automorphism of G. This mechanism gives conformal theories for the PSU(1,1\2) × PSU(2\2)/SU(2) × SU(2) and PSU(2,2\4)/SO(4,1) × SO(5) coset spaces, suggesting our results might be useful for quantizing the superstring on AdS3 × S3 and AdS5 × S5 backgrounds. © 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A simple description of the KP hierarchy and its multi-hamiltonian structure is given in terms of two Bose currents. A deformation scheme connecting various W-infinity algebras and the relation between two fundamental nonlinear structures are discussed. Properties of Faá di Bruno polynomials are extensively explored in this construction. Applications of our method are given for the Conformal Affine Toda model, WZNW models and discrete KP approach to Toda lattice chain.
Resumo:
We clarify the structure of the Hilbert space of curved βγ systems defined by a quadratic constraint. The constraint is studied using intrinsic and BRST methods, and their partition functions are shown to agree. The quantum BRST cohomology is non-empty only at ghost numbers 0 and 1, and there is a one-to-one mapping between these two sectors. In the intrinsic description, the ghost number 1 operators correspond to the ones that are not globally defined on the constrained surface. Extension of the results to the pure spinor superstring is discussed in a separate work.
Resumo:
Using 2-body trees on a flat space background, it is shown that the actions A[g, φ] = (Latin small letter esh) d4x√-g [(R/2K) + (1/2)(gμν ∂μφ∂νφ + λRφ2)] and Ā[ḡ, φ̄] = (Latin small letter esh) d4x√ - ḡ [(R̄/2k) + (1/2) ḡμν∂μφ̄∂ νφ] describe the same theory at the tree-level in this case. We also demonstrate the quantum equivalence (at one-loop) of the barred and unbarred systems for λ == -1/6 (conformal coupling).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)