116 resultados para Brake lines.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This study aimed to investigate the genetic variability of two Brazilian free range (Caipira) chickens lines using microsatellites analysis of ten loci. It was collected a total of 99 blood samples, which 49 were from Paraiso Pedres (PP) and 50 were from Rubro Negra (RN) lines. The amplification of the DNA fragments was performed by polymerase chain reaction (PCR) and the genotyping was conduct using ABI 3130 sequencer. The allele number variation was among 3 (LEI0254) to 32 (LEI0212) in the PP line, and 4 (LEI0254) to 31 (LEI0212) in the RN line. The allelic average per locus was 13.3 and 13.1 in the PP and RN lines, respectively. The average observed and the expected heterozygosity were 0.650 and 0.820 in the PP line, and 0.671 and 0.804 in the RN line. All of the analyzed loci were informative (PIC>0.5). These results indicate that these free-range animals have a high genetic variability, at least for the majority of the analyzed loci, and this genetic variation is higher than the commercial chickens and similar for the no-commercial birds.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report the frequency measurements of 18 optically pumped far-infrared (FIR) laser lines generated from CD3OH and (CH3OH)-C-13. We use the heterodyne technique of mixing FIR laser radiations and microwave radiation on a metal-insulator-metal point-contact tunnel diode to determine the FIR laser frequencies. Two FIR laser systems, consisting of CO2 waveguide pump lasers and Fabry-Perot FIR laser cavities, were used as optical sources. (C) 1997 Optical Society of America.
Resumo:
A transmission line is characterized by the fact that its parameters are distributed along its length. This fact makes the voltages and currents along the line to behave like waves and these are described by differential equations. In general, the differential equations mentioned are difficult to solve in the time domain, due to the convolution integral, but in the frequency domain these equations become simpler and their solutions are known. The transmission line can be represented by a cascade of π circuits. This model has the advantage of being developed directly in the time domain, but there is a need to apply numerical integration methods. In this work a comparison of the model that considers the fact that the parameters are distributed (Universal Line Model) and the fact that the parameters considered concentrated along the line (π circuit model) using the trapezoidal integration method, and Simpson's rule Runge-Kutta in a single-phase transmission line length of 100 km subjected to an operation power. © 2003-2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)