217 resultados para Bony healing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To evaluate the effect of implant length (6 mm vs. 11 mm) on osseointegration (bone-toimplant contact) of implants installed into sockets immediately after tooth extraction.Material and methods: In six Labrador dogs, the pulp tissue of the mesial roots of P-3(3) was removed and the root canals were filled. Flaps were elevated bilaterally, the premolars hemisectioned and the distal roots removed. Recipient sites were prepared in the distal alveolus and a 6 mm or an 11 mm long implant was installed at the test and control sites, respectively. Non-submerged healing was allowed. After 4 months of healing, block sections of the implant sites were obtained for histological processing and peri-implant tissue assessment.Results: No statistically significant differences were found between test and control sites both for hard and soft tissue parameters. The bone-to-implant contact evaluated at the apical region of the implants was similar as well. Although not statistically significant, the location of the top of the bony crest at the buccal aspect was more apical in relation to the implant shoulder at the test compared with the control sites (2.0 +/- 1.4 and 1.2 +/- 1.1 mm, respectively).Conclusions: Shorter implants (6 mm) present with equal osseointegration than do longer implants (11 mm).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim To evaluate the soft tissue and the dimensional changes of the alveolar bony crest at sites where deproteinized bovine bone mineral (DBBM) particles, concomitantly with the placement of a collagen membrane, were used at implants installed into sockets immediately after tooth extraction. Material and methods The pulp tissue of the mesial roots of 3P3 was removed in six Labrador dogs, and the root canals were filled. Flaps were elevated bilaterally, the premolars hemi-sectioned, and the distal roots removed. Recipient sites were prepared in the distal alveolus, and implants were placed. At the test sites, DBBM particles were placed in the residual marginal defects concomitantly with the placement of a collagen membrane. No treatment augmentation was performed at the control sites. A non-submerged healing was allowed. Impressions were obtained at baseline and at the time of sacrifice performed 4 months after surgery. The cast models obtained were analyzed using an optical system to evaluate dimensional variations. Block sections of the implant sites were obtained for histological processing and soft tissue assessments. Results After 4 months of healing, no differences in soft tissue dimensions were found between the test and control sites based on the histological assessments. The location of the soft tissue at the buccal aspect was, however, more coronal at the test compared with the control sites (1.8 +/- 0.8 and 0.9 +/- 0.8 mm, respectively). At the three-dimensional evaluation, the margin of the soft tissues at the buccal aspect appeared to be located more apically and lingually. The vertical dislocation was 1 +/- 0.6 and 2.7 +/- 0.5 mm at the test and control sites, respectively. The area of the buccal shrinkage of the alveolar crest was significantly smaller at the test sites (5.9 +/- 2.4 mm2) compared with the control sites (11.5 +/- 1.7 mm2). Conclusion The use of DBBM particles concomitantly with the application of a collagen membrane used at implants placed into sockets immediately after tooth extraction contributed to the preservation of the alveolar process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To evaluate the influence of deproteinized bovine bone mineral (DBBM) particles concomitant with the placement of a collagen membrane on alveolar ridge preservation and on osseointegration of implants placed into alveolar sockets immediately after tooth extraction. Material and methods: The pulp tissue of the mesial roots of 3P3 was removed in six Labrador dogs and the root canals were filled. Flaps were elevated in the right side of the mandible, and the buccal and lingual alveolar bony plates were exposed. The third premolar was hemi-sectioned and the distal root was removed. A recipient site was prepared and an implant was placed lingually. After implant installation, defects of about 0.6mm wide and 3.1mm depth resulted at the buccal aspects of the implant, both at the test and at the control sites. The same surgical procedures and measurements were performed on the left side of the mandible. However, DBBM particles with a size of 0.25-1mm were placed into the remaining defect concomitant with the placement of a collagen membrane. Results: All implants were integrated into mature bone. No residual DBBM particles were detected at the test sites after 4 months of healing. Both the test and the control sites showed buccal alveolar bone resorption, 1.8 +/- 1.1 and 2.1 +/- 1mm, respectively. The most coronal bone-to-implant contact at the buccal aspect was 2 +/- 1.1 an 2.8 +/- 1.3mm, at the test and the control sites, respectively. This difference in the distance was statistically significant. Conclusion: The application of DBBM concomitant with a collagen membrane to fill the marginal defects around implants placed into the alveolus immediately after tooth extraction contributed to improved bone regeneration in the defects. However, with regard to buccal bony crest preservation, a limited contribution of DBBM particles was achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To describe the healing of marginal defects below or above 1 mm of dimension around submerged implants in a dog model.Material and methods: In 12 Labrador dogs, all mandibular premolars and first molars were extracted bilaterally. After 3 months of healing, full-thickness flaps were elevated in the edentulous region of the right side of the mandible. Two recipient sites were prepared and the marginal 5mm were widened to such an extent to obtain, after implant installation, a marginal gap of 0.5mm at the mesial site (small defect) and of 1.25mm at the distal site (large defect). Titanium healing caps were affixed to the implants and the flaps were sutured allowing a fully submerged healing. The experimental procedures were subsequently performed in the left side of the mandible. The timing of the experiments and sacrifices were planned in such a way to obtain biopsies representing the healing after 5, 10, 20 and 30 days. Ground sections were prepared and histomorphometrically analyzed.Results: The filling of the defect with newly formed bone was incomplete after 1 month of healing in all specimens. Bone formation occurred from the base and the lateral walls of the defects. A larger volume of new bone was formed in the large compared with the small defects. Most of the new bone at the large defect was formed between the 10- and the 20-day period of healing. After 1 month of healing, the outline of the newly formed bone was, however, located at a similar distance from the implant surface (about 0.4mm) at both defect types. Only minor newly formed bone in contact with the implant, starting from the base of the defects, was seen at the large defects (about 0.8mm) while a larger amount was detected at the small defects (about 2.2 mm).Conclusion: Marginal defects around titanium implants appeared to regenerate in 20-30 days by means of a distance osteogenesis. The bone fill of the defects was, however, incomplete after 1 month.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To evaluate the healing at implants with a moderately rough surface placed and stabilized in recipient sites of dimensions deeper and larger than that of the implants to avoid any contact between parent bone and the implant.Material & methods: In six Labrador dogs, premolars and first molars were extracted bilaterally in the mandible. After 3 months of healing, mucoperiosteal full-thickness flaps were elevated and the premolar area of the alveolar bony crest was selected. Three recipient sites were prepared to place three implants. One implant was used as control. The other two were placed in recipient sites which left a circumferentially and periapical prepared defect of 0.7 mm (small) and 1.2 mm (large), respectively. All implants were stabilized with passive fixation plates to maintain the implants stable and without any contact with the implant bed. After 3 months of submerged healing, the animals were sacrificed. Ground sections were prepared and analyzed histomorphometrically.Results: The BIC% was 5.3% and 0.3% for implants placed in small and large defect sites, respectively, whereas it was 46.1% for control implants. The differences were statistically significant. The width of the residual defects was 0.4 and 0.5 mm at the small and large defects, respectively. An approximately 0.09 mm layer of dense connective tissue (DCT) rich in fibers and fibroblast-like cells was observed adherent to the implant surfaces. The percentage of implant surface covered by DCT was 92.8% and 95.6% at the small and large defects, respectively.Conclusion: Osseointegration was observed at the test sites, and the dimensions of the defects influenced the outcomes. However, the degree of osseointegration at both small and large defects was very low compared with the control sites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To evaluate the effect of mismatching abutments on implants with a wider platform on the peri-implant hard tissue remodeling and the soft tissue dimensions.Material and methods: Mandibular premolars and first molars of six Labrador dogs were extracted bilaterally. After 3 months of healing, one tapered implant was installed on each side of the mandibular molar region with the implant shoulder placed at the level of the buccal alveolar bony crest. on the right side of the mandible, an abutment of reduced diameter in relation to the platform of the implant was used, creating a mismatch of 0.85 mm (test), whereas an abutment of the same diameter of the implant platform was affixed in the left side of the mandible (control). The flaps were sutured to allow a non-submerged healing. After 4 months, the animals were sacrificed and ground sections were obtained for histometric assessment.Results: All implants were completely osseo-integrated. Bone levels were superior at the test than at the control sites. However, statistically significant differences were found only at the buccal and proximal aspects. The soft tissue vertical dimension was higher at the control compared with the test sites. However, statistically significant differences were demonstrated only at the buccal aspects.Conclusions: A mismatch of 0.85 mm between the implant and the abutment yielded more coronal levels of bone-to-implant contact and a reduced height of the peri-implant soft tissue (biologic width), especially at the buccal aspect, if the implant shoulder was placed flush with the level of the buccal alveolar bony crest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AimTo evaluate the influence of magnesium-enriched hydroxyapatite (MHA) (SintLife (R)) on bone contour preservation and osseointegration at implants placed immediately into extraction sockets.Material and methodsIn the mandibular pre-molar region, implants were installed immediately into extraction sockets of six Labrador dogs. MHA was placed at test sites, while the control sites did not receive augmentation materials. Implants were intended to heal in a submerged mode. After 4 months of healing, the animals were sacrificed, and ground sections were obtained for histomorphometric evaluation.ResultsAfter 4 months of healing, one control implant was not integrated leaving n=5 test and control implants for evaluation. Both at the test and the control sites, bone resorption occurred. While the most coronal bone-to-implant contact was similar between test and control sites, the alveolar bony crest outline was maintained to a higher degree at the buccal aspect of the test sites (loss: 0.7 mm) compared with the control sites (loss: 1.2 mm), even though this difference did not reach statistical significance.ConclusionsThe use of MHA to fill the defect around implants placed into the alveolus immediately after tooth extraction did not contribute significantly to the maintenance of the contours of the buccal alveolar bone crest.To cite this article:Caneva M, Botticelli D, Stellini E, Souza SLS, Salata LA, Lang NP. Magnesium-enriched hydroxyapatite at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 22, 2011; 512-517doi: 10.1111/j.1600-0501.2010.02040.x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To study the influence on the healing of soft and hard peri-implant tissues when implants of different sizes and configurations were installed into sockets immediately after tooth extraction.Material and methods: Transmucosal cylindrical implants, 3.3 mm in diameter in the control sites, and conical 5 mm in diameter in the test sites, were installed into the distal socket of the fourth mandibular premolars in dogs immediately after tooth extraction. After 4 months, the hard and soft tissue healing was evaluated histologically. Results: All implants were integrated in mineralized mature bone. Both at the test and control sites, the alveolar crest underwent resorption. The buccal bony surface at the implant test sites (conical; 3.8 mm) was more resorbed compared with the control sites (cylindrical; 1.6 mm). The soft tissue dimensions were similar in both groups. However, in relation to the implant shoulder, the peri-implant mucosa was located more apically at the test compared with the control sites.Conclusion: The present study confirmed that the distance between the implant surface and the outer contour of the buccal alveolar bony crest influenced the degree of resorption of the buccal bone plate. Consequently, in relation to the implant shoulder, the peri-implant mucosa will be established at a more apical level, if the distance between the implant surface and the outer contour of the alveolar crest is small.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and objective: The purpose of this study was to analyze histologically the influence of autologous platelet-rich plasma on bone healing in surgically created critical-size defects in rat calvaria.Material adn Methods: Thirty-two rats were divided into two groups: the control group (group C) and the platelet-rich plasma group. An 8-mm-diameter critical-size defect was created in the calvarium of each animal. In group C the defect was filled by a blood clot only. In the platelet-rich plasma group, 0.35 mL of platelet-rich plasma was placed in the defect and covered by 0.35 mL of platelet-poor plasma. Both groups were divided into subgroups (n = 8) and killed at either 4 or 12 wk postoperatively. Histometric (using image-analysis software) and histologic analyses were performed. The amount of new bone formed was calculated as a percentage of the total area of the original defect. Percentage data were transformed into arccosine for statistical analysis (analysis of variance, Tukey, p < 0.05).Results: No defect completely regenerated with bone. The platelet-rich plasma group had a statistically greater amount of bone formation than group C at both 4 wk (17.68% vs. 7.20%, respectively) and 12 wk (24.69% vs. 11.65%, respectively) postoperatively.Conclusion: Within the limits of this study, it can be concluded that platelet-rich plasma placed in the defects and covered by platelet-poor plasma significantly enhanced bone healing in critical-size defects in rat calvaria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AimTo compare the remodeling of the alveolar process at implants installed immediately into extraction sockets by applying a flap or a "flapless" surgical approach in a dog model.Material and methodsImplants were installed immediately into the distal alveoli of the second mandibular premolars of six Labrador dogs. In one side of the mandible, a full-thickness mucoperiosteal flap was elevated (control site), while contra-laterally, the mucosa was gently dislocated, but not elevated (test site) to disclose the alveolar crest. After 4 months of healing, the animals were sacrificed, ground sections were obtained and a histomorphometric analysis was performed.ResultsAfter 4 months of healing, all implants were integrated (n=6). Both at the test and at the control sites, bone resorption occurred with similar outcomes. The buccal bony crest resorption was 1.7 and 1.5 mm at the control and the test sites, respectively.Conclusions"Flapless" implant placement into extraction sockets did not result in the prevention of alveolar bone resorption and did not affect the dimensional changes of the alveolar process following tooth extraction when compared with the usual placement of implants raising mucoperiosteal flaps.To cite this article:Caneva M, Botticelli D, Salata LA, Souza SLS, Bressan E, Lang NP. Flap vs. "flapless" surgical approach at immediate implants: a histomorphometric study in dogs.Clin. Oral Impl. Res. 21, 2010; 1314-1319.doi: 10.1111/j.1600-0501.2009.01959.x.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To validate the platform switching concept at oral implants with respect to the preservation of the alveolar crestal bone levels in an animal model. Material & methods: Five minipigs received three implants each with a 0.25mm implant/ abutment mismatch and were placed flush (T(0)), 1 mm below (T(1)) and 1 mm above (T(+1)) the alveolar bony crest, and as a control, one conventionally restored implant placed at the bone level. The implants were randomly inserted flapless into the mandible. Four months after implant insertion, the animals were sacrificed, and undecalcified block sections were obtained and used for histological analyses. Results: The mean values for peri- implant bone resorption were 1.09 +/- 0.59mm (Control), 0.51 (+/- 0.27 mm, T(0)), 0.50 (+/- 0.46 mm, T(1)) and 1.30 (+/- 0.21 mm, T (+1)), respectively. Statistically significant differences (P< 0.05) were found among the test (T(0), T(-1)) and the control sites. Control implants presented an average biologic width length of 3.20mm (+/- 0.33), with a connective tissue adaptation compartment of 1.29mm (+/- 0.53) and an epithelial attachment of 1.91 mm (+/- 0.71). T(0), T(1) and T(+1) implants presented with a mean biologic width of 1.97mm (+/- 1.20), 2.70 mm (+/- 1.36) and 2.84mm (+/- 0.90), respectively, with a connective tissue adaptation compartment of 1.21mm (+/- 0.97), 1.21 mm (+/- 0.65) and 1.50 mm (+/- 0.70) and an epithelial attachment of 0.84 mm (+/- 0.93), 1.66 mm (+/- 0.88) and 1.35 mm (+/- 0.44), respectively. Differences between the configurations were mainly associated with the length of the epithelial attachment. The epithelial attachment was significantly longer in the C sites than in T(0) (P = 0.014). However, no other differences between configurations were detected. Conclusion: If the implants are positioned at the level of the alveolar bony crest, the platform switching concept may have a minor impact on the length of the epithelial attachment (0.84 vs. 1.91 mm), while the connective tissue adaptation compartment remains relatively unaffected. Moreover, platform switching resulted in less resorption of the alveolar crest (0.58 mm).