152 resultados para BISMUTH IODIDES
Resumo:
The multiferroic behavior with ion modification using rare-earth cations on crystal structures, along with the insulating properties of BiFeO3 (BFO) thin films was investigated using piezoresponse force microscopy. Rare-earth-substituted BFO films with chemical compositions of (Bi 1.00-xRExFe1.00O3 (x=0; 0.15), RE=La and Nd were fabricated on Pt (111)/Ti/SiO2/Si substrates using a chemical solution deposition technique. A crystalline phase of tetragonal BFO was obtained by heat treatment in ambient atmosphere at 500 °C for 2 h. Ion modification using La3+ and Nd3+ cations lowered the leakage current density of the BFO films at room temperature from approximately 10-6 down to 10-8 A/cm2. The observed improved magnetism of the Nd3+ substituted BFO thin films can be related to the plate-like morphology in a nanometer scale. We observed that various types of domain behavior such as 71° and 180° domain switching, and pinned domain formation occurred. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cm Oe. © 2012 Elsevier Ltd and Techna Group S.r.l.
Resumo:
We report the structural and magnetic properties of Co2MnO 4, partially substituted by Bi at the octahedral site. Bismuth enhances ferromagnetism due to a decrease of the Co2+-Co2+ antiferromagnetic interactions and an increase of the Mn3+-Mn 4+ exchanges. Spurious phases (magnetic and/or nonmagnetic oxides) can easily form because of the large differences between the ionic radii of Bi3+ and Co3+, hiding or altering the intrinsic physical properties of the main BixCo2-xMnO4 phase. An easy way to eliminate the secondary phases is using acid reagents. Short-time etching of Bi0.1Co1.9MnO4 using nitric acid was successfully used, keeping most of the properties of the initial compound, with no alteration of the crystallographic structure. Final stoichiometry was respected (∼Bi0.08Co1.82MnO4), meaning that the material after etching definitely contains bismuth elements in its structure and the observed properties are intrinsic to the oxide spinel. Additional experiments were performed as a function of the synthesis conditions, showing that an optimal pH value of 7 allowed the best magnetic response of the non-doped material. © 2013 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Odontologia - FOAR
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)