561 resultados para Alvarenga Peixoto
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This experiment aimed to study equine fibroblasts in culture analyzing and the cell cycle and viability of cells pre- and post-freezing. Skin fragments were obtained from 6 horses and cultured in DMEM high glucose + 10% FCS in 5% CO(2) until the beginning of confluence. Two passages were performed before freezing. Cells subjected to serum starvation (0.5% FCS) were analyzed for viability and cell cycle at 24, 48, 72, 96, 120, 144 and 168 h of culture. For the confluent groups, cells were analyzed at the moment they achieved confluence. Cellular viability was assisted with Hoescht 33342 and propidium iodide. The analysis of apoptosis/necrosis and cell cycle was performed using a flow cytometer (FACS Calibur BD(A (R))) after staining the cells with annexin V and propidium iodide. Both optical microscopy and flow cytometry confirmed that cellular viability was similar for serum starvation and confluent groups (average 84%). Similarly, both methods were efficient to synchronize the cell cycle before freezing. However, after thawing, serum starvation, for more than 24 h, was superior to culture for synchronizing cells in G0/G1 (69% x 90%). The results of this experiment indicate that equine fibroblasts can be efficiently cultured after thawing.
Resumo:
This study examined the effect of treating mares with equine pituitary extract (EPE) alone or in combination with hCG on the recovery rate of immature follicles by transvaginal follicular aspiration (ovum pick-up; OPU). Ten normally cycling crossbred mares aged 3-15 years and weighing 350-400 kg were subjected to each of three treatments in a random sequence with each exposure to a new treatment separated by a rest cycle during which a spontaneous ovulation occurred. The treatments were (1) superovulated with 25 mg EPE and treated with 2500 IU hCG, (2) superovulation with 25 mg EPE, and (3) control (no exogenous treatment). Treatments 7 days after spontaneous ovulation; and all the follicles > 10 mm were aspirated 24 h after the largest follicle achieved a diameter of 27-30 mm for control group, and most follicles reached 22-27 mm for the EPE alone treatment. To the group EPE+hCG, when the follicles reached 22-27 mm, hCG was administered, 24 h before OPU. Superovulation increased the number of follicles available for aspiration. The total number of follicles available for aspiration was 61 in the EPE/hCG group. 63 in the EPE group and 42 in the control. The proportion of follicles aspirated varied from 63.5% to 73.8%. Oocyte recovery rate ranged from 15.0% to 16.7% and the proportion of mares that yielded at least one oocyte was 70% (7/10) in the EPE/hCG, 60% (6/10) in the EPE alone and 50% (5/10) in control group. The EPE/hCG treatment had a higher proportion of follicles with expanded granulose cells (64.4%) than the control (3.3%: p < 0.05) and the EPE treatment (25.0%). The intervals from spontaneous ovulation to aspiration were similar for all treatments (11-12 days). However, superovulatory treatment significantly increased the aspiration to ovulation interval from 15 +/- 4 days for control to 27 +/- 15 days for EPE (p < 0.05) and to 23 +/- 13 days for EPE/hCG treatment with commensurate increases in the time between spontaneous ovulations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Superovulation is an important tool for routine use in equine embryo transfer (ET) in order to reduce the costs and to enhance the efficiency of ET programs. Satisfactory superovulatory answers (2-7 ovulations) have been reported in mares treated with Equine Pituitary Extract (EPE) and more recently using a commercial Equine FSH. However, embryo recovery rates have been inconsistent and below expectations (20-50% embryos/ovulation). Recent studies have shown that superovulatory treatment leads to disturbances in oocyte maturation and transport, especially in mares with a high ovarian response. Higher and more consistent embryo recovery rates per ovulation have been observed in mares treated with lower doses of EPE. This paper presents a review of recent studies related to superovulation in mares.
Resumo:
In order to modulate uterine inflammatory response and evaluate the effect of corticosteroid therapy on fertility, 90 cycles of 45 mares were used for artificial insemination with frozen semen, using three different protocols: G1 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma; G2 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + corticosteroid therapy; G3 - inseminated with frozen semen (800 x 10(6) viable spermatozoa pre-freezing) + 20 mL of seminal plasma + corticosteroid therapy. Corticosteroid therapy consisted on one administration of prednisolone acetate (0.1 mg/Kg - Predef (R)) when mares presented 35mm follicles and uterine edema, concomitantly with the unique dose of hCG (human chorionic gonadotropin), then repeated each 12 hours until ovulation. on first fertility trial, with normal mares, there was no difference between control and treated groups (p>0.05), using seminal plasma associated with corticosteroid therapy (40 vs. 38%, respectively) or corticosteroid therapy alone (40 vs. 45% respectively). The second fertility trial, performed with mares with previous history of post-insemination endometritis, demonstrated a significant increase of pregnancy rate when mares were submitted to corticosteroid therapy (0.0 vs. 64.5%, respectively; p<0.05). Corticosteroid therapy was shown to be safe, with no physical or reproductive alterations on treated mares, demonstrating to be an adequate option to those animals with history of post-breeding or post-insemination endometritis. Further clinical research is necessary to confirm these results and contribute to the establishment of preventive therapy for cases of post-insemination endometritis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)