109 resultados para Adaptive system theory
Resumo:
The main objective of this work is to illustrate an application of angular active control in a sectioned airfoil using shape memory alloys. In the proposed model, one wants to establish the shape of the airfoil profile based on the determination of an angle between its two sections. This angle is obtained by the effect of the shape memory of the alloy by passing an electric current that modifies the temperature of the wire through the Joule effect, changing the shape of the alloy. This material is capable of converting thermal energy into mechanical energy and once permanently deformed, the material can return to its original shape by heating. Due to the presence of nonlinear effects, especially in the mathematical model of the alloy, this work proposes the application of a control system based on fuzzy logic. Through numerical tests, the performance of the fuzzy controller is compared with an on-off controller applied in a sectioned airfoil model.
Resumo:
This paper refers to the design of an expert system that captures a waveform through the use of an accelerometer, processes the signal and converts it to the frequency domain using a Fast Fourier Transformer to then, using artificial intelligence techniques, specifically Fuzzy Reasoning, it determines if there is any failure present in the underlying mode of the equipment, such as imbalance, misalignment or bearing defects.
Resumo:
The education designed and planned in a clear and objective manner is of paramount importance for universities to prepare competent professionals for the labor market, and above all can serve the population with an efficient work. Specifically, in relation to engineering, conducting classes in the laboratories it is very important for the application of theory and development of the practical part of the student. The planning and preparation of laboratories, as well as laboratory equipment and activities should be developed in a succinct and clear way, showing to students how to apply in practice what has been learned in theory and often shows them why and where it can be used when they become engineers. This work uses the MATLAB together with the System Identification Toolbox and Arduino for the identification of linear systems in Linear Control Lab. MATLAB is a widely used program in the engineering area for numerical computation, signal processing, graphing, system identification, among other functions. Thus the introduction to MATLAB and consequently the identification of systems using the System Identification Toolbox becomes relevant in the formation of students to thereafter when necessary to identify a system the base and the concept has been seen. For this procedure the open source platform Arduino was used as a data acquisition board being the same also introduced to the student, offering them a range of software and hardware for learning, giving you every day more luggage to their training