151 resultados para 2D NMR
Resumo:
The aim of this paper is to present a procedure that utilizes C-13 NMR for identification of substituent groups which are bonded to carbon skeletons of natural products. For so much was developed a new version of the program (MACRONO), that presents a database with 161 substituent types found in the most varied terpenoids. This new version was widely tested in the identification of the substituents of 60 compounds that, after removal of the signals that did not belong to the carbon skeleton, served to test the prediction of skeletons by using other programs of the expert system (SISTEMAT). (C) 2002 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Glasses having the composition As2S3(1-x)-P2S5(x) with x ranging from 0 to 0.7 have been investigated to determine the compositional effect on properties and local structure. Glass transition temperature (T,) decreases and molar volume (V,,) increases with an increase in P content. Using P-31 NMR, we measured the strength of the P-31-P-31 magnetic dipolar interaction in the glass samples and the AsPS4 crystallized phase. Based on these data, we observed the formation of the As2P2S8 network, which reflects an increase in the average coordination number and a decrease in the degree of rigidity.
NMR study of ion-conducting organic-inorganic nanocomposites poly(ethylene glycol) - Silica - LiClO4
Resumo:
Hybrid organic-inorganic ionic conductors, also called ormolytes, were obtained by dissolution of LiClO4 into silica/poly(ethylene glycol) matrices. Solid-state nuclear magnetic resonance (NMR) was used to probe the inorganic phase structure (Si-29) and the effects of the temperature and composition on the dynamic behavior of the ionic species (Li-7) and the polymer chains (H-1 and C-13). The NMR results between -100 and +90 degrees C show a strong correlation with ionic conductivity and differential scanning calorimetry experiments. The results also demonstrate that the cation mobility is assisted by segmental motion of the polymer, which is in agreement with the results previously reported for pure poly(ethylene oxide), PEG, electrolytes.
Resumo:
The SPPS methodology has continuously been investigated as a valuable model to monitor the solvation properties of polymeric materials. In this connection, the present work applied HRMAS-NMR spectroscopy to examine the dynamics of an aggregating peptide sequence attached to a resin core with varying peptide loading (up to 80%) and solvent system. Low and high substituted BHAR were used for assembling the VQAAIDYING sequence and some of its minor fragments. The HRMAS-NMR results were in agreement with the swelling of each resin, i.e. there was an improved resolution of resonance peaks in the better solvated conditions. Moreover, the peptide loading and the attached peptide sequence also affected the spectra. Strong peptide chain aggregation was observed mainly in highly peptide loaded resins when solvated in CDCl3. Conversely, due to the better swelling of these highly loaded resins in DMSO, improved NMR spectra were acquired in this polar aprotic solvent, thus enabling the detection of relevant sequence-dependent conformational alterations. The more prominent aggregation was displayed by the VQAAIDYING segment and not by any of its intermediary fragments and these findings were also corroborated by EPR studies of these peptide-resins labelled properly with an amino acid-type spin probe. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
A more direct and efficient route to the syntheses of [Ru(NH3)(4)(X-Y)](BF4)(2), where X-Y can be 2-acetylpyridine (2-acpy) or 2-benzoylpyridine (2-bzpy), based on the reactions of [RuCl(NH3)(5)]Cl-2 with these ortho-substituted azines is described. The [Ru(2-acpy)(NH3)(4)](BF4)(2) and [Ru(NH3)(5)(2-bzpy)](BF4)(2) complexes have a molar conductance of 328 and 292 Ohm(-1) cm(2) mol(-1), respectively, corresponding to a 1:2 species in solution. These complexes showed two intense absorption bands around 620-650 and 380 nm, the energies of which are solvent dependent, decreasing with the increase of the Gutman's donor number of the solvent, and were assigned as metal-to-ligand charge transfer (MLCT). The complexes have oxidation potentials (Ru-II/III) of +0.380 V vs. Ag/AgCl (2-acpy) and +0.400 V vs. Ag/AgCl (2-bzpy), and reduction potentials (X-Y0/-) of -1.10 V vs. Ag/AgCl (2-acpy) and -0.950 V vs. Ag/AgCl (2-bzpy) on CF3COOH/NaCF3COO at pH=3.0, scan rate 100 mV s(-1), [Ru]=1.0x10(-3) mol l(-1). Both processes show a coupled chemical reaction. Upon oxidation of the metal center, the MLCT absorption bands are bleached and restored upon subsequent reduction. In order to confirm the structure of the complexes a detailed LH NMR investigation was performed in d(6)-acetone. Further confirmation of the structure was obtained by recording the N-15 NMR spectrum of [Ru(NH3)(4)(2-bzpy)](2+) in d(6)-DMSO using the INEPT pulse sequence improving the sensitivity of N-15 by polarization transfer from the protons to the N-15. The Nuclear Overhauser Effect (NOE) experiments were made qualitatively for [Ru(NH3)(4)(2-acpy)](2+), and showed that H-6 of the pyridine is close to a NH3 proton, which should then be in a cis position, and, hence, confirming that acpy is acting as a bidentate ligand. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
Crotamine is one of four major components of the venom of the South American rattlesnake Crotalus durissus terrificus. Similar to its counterparts in the family of the myotoxins, it induces myonecrosis of skeletal muscle cells. This paper describes a new NMR structure determination of crotamine in aqueous solution at pH 5.8 and 20 degrees C, using standard homonuclear (1)H NMR spectroscopy at 900 MHz and the automated structure calculation software ATNOS/CANDID/DYANA. The automatic NOESY spectral analysis included the identification of a most likely combination of the six cysteines into three disulfide bonds, i.e. Cys4-Cys36, Cys11-Cys30 and Cys18-Cys37; thereby a generally applicable new computational protocol is introduced to determine unknown disulfide bond connectivities in globular proteins. A previous NMR structure determination was thus confirmed and the structure refined. Crotamine contains an alpha-helix with residues 1-7 and a two-stranded anti-parallel beta-sheet with residues 9-13 and 34-38 as the only regular secondary structures. These are connected with each other and the remainder of the polypeptide chain by the three disulfide bonds, which also form part of a central hydrophobic core. A single conformation was observed, with Pro13 and Pro21 in the trans and Pro20 in the cis-form. The global fold and the cysteine-pairing pattern of crotamine are similar to the beta-defensin fold, although the two proteins have low sequence homology, and display different biological activities. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The temperature dependence of the electrical conductivity and the F-19 nuclear magnetic resonance (NMR) of PbGeO3-PbF2CdF, glasses and glass ceramics are investigated. The measured conductivity values of the glasses are above 10(-5) Skin at 500 K, and increase with increasing lead fluoride content. Activation energies extracted from the conductivity data are in the range 0.59-0.73 eV. Results are consistent with the hypothesis that in these oxyfluoride glasses lead fluoride rich clusters are dispersed in a metagermanate based matrix providing increasing mobility pathways for conducting ions. The conductivity of a sample of the glass ceramic of composition (mol%) 60PbGeO(3-)20PbF(2)-20CdF(2) was found to be smaller than that in the corresponding glass, suggesting that there are poor ionic conducting regions in the interface between the nanometer sized crystals. The temperature dependence of the F-19 relaxation times, measured in the range 100-800 K, exhibit the qualitative features associated with high fluorine mobility in both, glass and glass ceramics materials. We suggest that de-convolution of the spin-lattice relaxation rates observed in the glass ceramics shows that the observed high temperature rate maximum is associated with the diffusional motions of the fluorine ions in beta-PbF2 crystals. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Structural characterization by NMR spectroscopy and DFT calculations was performed for two dimeric naptho-gamma-pyrones, the polyketides Aurasperone A and Fonsecinone A. Experimental data ((13)C NMR chemical shifts and interatomic geometries) were found to be in reasonable agreement with theoretical ones, obtained at B3LYP level for three different basis sets (6-31G/6-31G(d)/6-31G(d,p)). Additionally, the dipolar moments calculation allowed explaining the different solubility for these molecules. The (13)C NMR theoretical chemical shifts were calculated with the GIAO method and the solvent effects were taken into account by means of the PCM approximation. In this work, the DFT/GIAO methodology shows to be a reliable tool in the assignment of experimental NMR chemical shifts of similar molecules. (C) 2008 Wiley Periodicals, Inc. Int J Quantum Chem 108: 2408-2416, 2008.
Resumo:
In this note we show that the induced 2D-gravity SL(2, ℝ) currents can be defined in a gauge-independent way although they manifest themselves as generators of residual symmetries only in some special gauges. In the Coulomb gas representation we investigate two approaches, namely one resembling string field theory and another that emphasizes the SL(2, ℝ) structure in the phase space. In the conformal gauge we propose a solution of the Liouville theory in terms of the SL(2, ℝ) currents.
Resumo:
A χ2 analysis is performed to test the resolving power of two-dimensional pion interferometry using for illustration the preliminary E802 data on Si+Au at 14.6 A GeV/c. We find that the resolving power to distinguish two decoupling geometries of different dynamical models is enhanced by studying the variation of the mean χ2 per degrees of freedom with respect to the range of the analysis in the qT, qL plane. The preliminary data seem to rule out dynamical models with significant ω, η resonance formation yields.
Resumo:
The classification of the regularization ambiguity of a 2D fermionic determinant in three different classes according to the number of second-class constraints, including the new Faddeevian regularization, is examined and extended. We find a new and important result that the Faddeevian class, with three second-class constraints, possesses a free continuous one parameter family of elements. The criterion of unitarity restricts the parameter to the same range found earlier by Jackiw and Rajaraman for the two-constraint class. We studied the restriction imposed by the interference of right-left modes of the chiral Schwinger model (χQED2) using Stone's soldering formalism. The interference effects between right and left movers, producing the massive vectorial photon, are shown to constrain the regularization parameter to belong to the four-constraint class which is the only nonambiguous class with a unique regularization parameter. ©1999 The American Physical Society.
Resumo:
The application of on-line C30-reversed-phase high-pressure liquid chromatography-nuclear magnetic resonance spectroscopy is described for the analysis of tetraglycosylated flavonoids in aqueous and hydroalcoholic extracts of the leaves of Maytenus aquifolium (Celastraceae). Triacontyl stationary phases showed adequate separation for on-line 1H-NMR measurements at 600 MHz and allowed the characterisation of these flavonoids by detection of both aromatic and anomeric proton signals. Copyright (C) 2000 John Wiley and Sons, Ltd.