120 resultados para xanthine oxidase inhibitory
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Species from the Solenopsis saevissima (Smith) (Hymenoptera: Formicidae) species group are native to South America and have a cosmopolitan distribution because they have been accidentally introduced in many countries around the world. In Brazil, they have a wide distribution, including urban areas. The present study was conducted to investigate the characterization of Solenopsis genus populations associated with urban/human interference sites in Brazil by analyzing the mitochondrial gene cytochrome oxidase I and estimating the degree of relatedness of these populations to make inferences about their phylogeny and also observe the patterns of mitochondrial haplotype (mitotype) distribution across their range. The results revealed complete geographical coherence and polyphyly for the Solenopsis invicta Buren and Solenopsis saevissima species groups, which confirms the diversity of the genera. It also suggests the possibility that reproductively-isolated populations occur, resulting in the evolutionary process of speciation. No predominant haplotype was found in the populations analyzed, but some were more prevalent.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In birds, neurons of the isthmo-optic nucleus (ION), as well as ''ectopic'' neurons, send axons to the retina, where they synapse on cells in the inner nuclear layer (INL). Previous work has shown that centrifugal axons can be divided into two anatomically distinct types depending on their mode of termination: either ''convergent'' or ''divergent'' (Ramon y Cajal, 1889; Maturana and Frenk, 1965). We show that cytochrome-oxidase histochemistry specifically labels ''convergent'' centrifugal axons and target neurons which appear to be amacrine cells, as well as three ''types'' of ganglion cells: two types found in the INL (displaced ganglion cells) and one in the ganglion cell layer. Labeled target amacrine cells have distinct darkly labeled ''nests'' of boutons enveloping the somas, are associated with labeled centrifugal fibers, and are confined to central retina. Lesions of the isthmo-optic tract abolish the cytochrome-oxidase labeling in the centrifugal axons and in the target amacrine cells but not in the ganglion cells. Cytochromeoxidase-labeled ganglion cells in the INL are large; one type is oval and similar to the classical displaced ganglion cells of Dogiel, which have been reported to receive centrifugal input; the other type is rounder. Rhodamine beads injected into the accessory optic system results in retrograde label in both types of cells, showing that two distinct types of displaced ganglion cells project to the accessory optic system in chickens. The ganglion cells in the ganglion cell layer that label for cytochrome oxidase also project to the accessory optic system. These have proximal dendrites that ramify in the outer inner plexiform layer. Neither the target amacrine cells nor either of the displaced ganglion cells are immunoreactive for the inhibitory transmitter gamma aminobutyric acid. At least some of the target amacrine cells may, however, be cholinoceptive: we found that the antibody to the alpha-7 subunit of the nicotinic ACh receptor labels a population of cells in the INL that are similar in location, size, and the presence of labeled bouton-like structures to those we find labeled with cytochrome oxidase. This antibody also labels neurons in the ION proper but not ectopic cells. In conclusion, it appears that cytochrome oxidase may be a marker for ''convergent'' centrifugal axons and at least one of their target cells in the INL.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Apocynin, a methoxy-catechol originally extracted from the root of Picrorhiza kurroa, has been used as an inhibitor of the NADPH oxidase complex in phagocytic and nonphagocytic cells. Its mechanism of inhibition is linked to their prior activation through the action of peroxidases leading to oxidation of the dimeric product, diapocynin. In this study, dipocinina was synthesized and investigated its effect as an inhibitor of activation NADPH oxidase in neutrophils (PMN) and peripheral blood mononuclear cells (PBMC). The synthesis of diapocinina was performed by oxidation of apocinina by potassium persulphate in the midst of water for 5 minutes at room temperature. The precipitate was filtered and washed with water and methanol. Diapocinina was characterized by mass spectrometry. PMN and PBMC were obtained from peripheral blood of healthy donors and purified for gelatin sedimentation, or centrifugation with Histopaque ®, the red cells were lysed with ice water or ammonium chloride. Diapocinina or apocinina were incubated with opsonized zymosan, activation of PMNs and release of superoxide anion, these monitored by chemiluminescent assay dependent lucigenina. We found that diapocinina inhibitor was no better than the apocinina in PMN. However, diapocinina was more efficient than apocinina as an inhibitor of NADPH oxidase in PBMC. In conclusion, whereas PBMC are relatively poor compared with peroxidases PMN, our results are consistent with the need for oxidation apocinina for its effect as an inhibitor of NADPH oxidase
Resumo:
Apocynin has been used as an efficient inhibitor of the multi-enzymatic complex NADPH oxidase in many experimental models involving phagocytic and nonphagocytic cells. The mechanism of inhibition has been linked with the previous activation of apocynin through the action of cellular peroxidases leading to the formation of a dimeric oxidation product, diapocynin. In this study we compared apocynin with pure diapocynin regarding their effects as scavenger of hydrogen peroxide and hypochlorous generated by glucose/glucose oxidase and myeloperoxidase respectively, and as inhibitors of the production of hydrogen peroxide and hypochlorous acid by activated neutrophils. The production of hydrogen peroxide was measured by the oxidation of the fluorescent substance Amplex Red and the production of hypochlorous acid by was measured as taurine-chloramine derivative using the chromogenic substrate 3,3’,5,5’- tetramethylbenzidine (TMB). Neutrophils (1 x106 cells/mL) were pre-incubated in PBS buffer supplemented with 1 mM calcium chloride, 0.5 mM magnesium chloride, 1 mg/mL glucose and 5 mM taurine in the presence or absence of inhibitors. The reactions were triggered by adding the soluble stimulus Forbol Miristate Acetate PMA or zymosan and incubated by additional 30 minutes. We found that pure diapocynin was not better than apocynin regarding its scavenger and inhibitory properties. These results suggest that the formation of diapocynin is not essential for the action of apocynin as inhibitor of NADPH oxidase activation
Resumo:
Não disponível
Resumo:
Dengue virus (DENV) is an enveloped RNA virus that is mosquito-transmitted and can infect a variety of immune and non-immune cells. Response to infection ranges from asymptomatic disease to a severe disorder known as dengue hemorrhagic fever. Despite efforts to control the disease, there are no effective treatments or vaccines. In our search for new antiviral compounds to combat infection by dengue virus type 1 (DENV-1), we investigated the role of galectin-1, a widely-expressed mammalian lectin with functions in cell-pathogen interactions and immunoregulatory properties. We found that DENV-1 infection of cells in vitro exhibited caused decreased expression of Gal-1 in several different human cell lines, suggesting that loss of Gal-1 is associated with virus production. In test of this hypothesis we found that exogenous addition of human recombinant Gal-1 (hrGal-1) inhibits the virus production in the three different cell types. This inhibitory effect was dependent on hrGal-1 dimerization and required its carbohydrate recognition domain. Importantly, the inhibition was specific for hrGal-1, since no effect was observed using recombinant human galectin-3. Interestingly, we found that hrGal-1 directly binds to dengue virus and acts, at least in part, during the early stages of DENV-1 infection, by inhibiting viral adsorption and its internalization to target cells. To test the in vivo role of Gal-1 in DENV infection, Gal-1-deficient-mice were used to demonstrate that the expression of endogenous Galectin-1 contributes to resistance of macrophages to in vitro-infection with DENV-1 and it is also important to physiological susceptibility of mice to in vivo infection with DENV-1. These results provide novel insights into the functions of Gal-1 in resistance to DENV infection and suggest that Gal-1 should be explored as a potential antiviral compound.