242 resultados para titanium implants


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: To evaluate bone healing around dental implants with established osseointegration in experimental diabetes mellitus (DM) and insulin therapy by histomorphometric and removal torque analysis in a rat model. Materials and methods: A total of 80 male Wistar rats received a titanium implant in the tibiae proximal methaphysis. After a healing period of 60 days, the rats were divided into four groups of 20 animals each: a 2-month control group, sacrificed at time (group A), a diabetic group (group D), an insulin group (group I), and a 4-month control group (group C), subdivided half for removal torque and half for histomorphometric analysis. In the D and I groups the DM was induced by a single injection of 40 mg/kg body weight streptozotocin (STZ). Two days after DM induction, group I received subcutaneous doses of insulin twice a day, during 2 months. Groups C and D received only saline. Two months after induction of DM, the animals of groups D, C and I were sacrificed. The plasmatic levels of glucose (GPL) were monitored throughout the experiment. Evaluation of the percentages of bone-to-implant contact and bone area within the limits of the implant threads was done by histomorphometric and mechanical torque analysis. Data were analyzed by anova at significant level of 5%. Results: The GPL were within normal range for groups A, C and I and higher for group D. The means and standard deviations (SD) for histomorphometric bone area showed significant difference between group D (69.34 ± 5.00%) and groups C (78.20 ± 4.88%) and I (79.63 ± 4.97%). Related to bone-to-implant contact there were no significant difference between the groups D (60.81 + 6.83%), C (63.37 + 5.88%) and I (66.97 + 4.13%). The means and SD for removal torque showed that group D (12.91 ± 2.51 Ncm) was statistically lower than group I (17.10 ± 3.06 Ncm) and C (16.95 ± 5.39 Ncm). Conclusions: Diabetes mellitus impaired the bone healing around dental implants with established osseointegration because the results presented a lower percentage of bone area in group D in relation to groups C and I resulting in a lowest torque values for implant removal. Moreover, insulin therapy prevents the occurrence of bone abnormalities found in diabetic animals and osseointegration was not compromised. © 2012 John Wiley & Sons A/S.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Application of recombinant human bone morphogenetic protein 2 (rhBMP-2) to implant surfaces has been of great interest due to its osteoinductive potential. However, the optimal coating methodology has not been clarified. The objective of the study was to determine whether the application of rhBMP-2 onto plasma-sprayed hydroxyapatite implant surfaces by immersion in protein solution before implant installation would result in significantly improved bone apposition. Using a sheep iliac model, titanium (Ti) and plasma-sprayed calcium-phosphate (PSCaP)-coated implants uncoated and coated with rhBMP-2 were assessed for their osteogenic effects in the peri-implant area over time in terms of osseointegration and de novo bone formation. After 3 and 6 weeks postoperatively, the samples were retrieved and were subjected to bone-to-implant contact (BIC) and bone area fraction occupancy (BAFO) evaluation. When rhBMP-2 was applied to the PSCaP surface, significant increases in BIC and BAFO were observed at 3 weeks in vivo, whereas when adsorbed directly onto the titanium implant surface, rhBMP-2 did not as effectively improve the bone response (although significantly higher than control Ti). The outcomes of the present study suggested that the combination of plasma-sprayed calcium-phosphate surface and rhBMP-2 coating significantly enhanced osseointegration, which validated the postulated hypothesis. © 2013 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the current review was to investigate the implications of the surface and bulk properties of abutment implants and their degradation in relation to periodontal health. The success of dental implants is no longer a challenge for dentistry. The scientific literature presents several types of implants that are specific for each case. However, in cases of prosthetics components, such as abutments, further research is needed to improve the materials used to avoid bacterial adhesion and enhance contact with epithelial cells. The implanted surfaces of the abutments are composed of chemical elements that may degrade under different temperatures or be damaged by the forces applied onto them. This study showed that the resulting release of such chemical elements could cause inflammation in the periodontal tissue. At the same time, the surface characteristics can be altered, thus favoring biofilm development and further increasing the inflammation. Finally, if not treated, this inflammation can cause the loss of the implant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. An imprecise fit between frameworks and supporting dental implants in loaded protocols increases the strain transferred to the periimplant bone, which may impair healing or generate microgaps.Purpose. The purpose of this study was to investigate the microstrain between premachined 1-piece screw-retained frameworks (group STF) and screw-retained frameworks fabricated by cementing titanium cylinders to the prefabricated framework (group CTF). This procedure was developed to correct the misfit between frameworks and loaded implants.Material and methods. Four internal hexagon cylindrical implants were placed 10 mm apart in a polyurethane block by using the surgical guides of the corresponding implant system. Previously fabricated titanium frameworks (n=10) were divided into 2 groups. In group STF, prefabricated machined frameworks were used (n=5), and, in group CTF, the frameworks were fabricated by using a passive fit procedure, which was developed to correct the misfit between the cast titanium frameworks and supporting dental implants (n=5). Both groups were screw-retained under torque control (10 Ncm). Six strain gauges were placed on the upper surface of the polyurethane block, and 3 strain measurements were recorded for each framework. Data were analyzed with the Student t test (alpha=.05).Results. The mean microstrain values between the framework and the implants were significantly higher for group STF (2517 me) than for group CTF (844 me) (P<.05).Conclusions. Complete-arch implant frameworks designed for load application and fabricated by using the passive fit procedure decreased the strain between the frameworks and implants more than 1 piece prefabricated machined frameworks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objectives: the purpose of this study was to evaluate the surfaces of commercially pure titanium (cpTi) implants surface modified by laser beam (LS), by laser beam associated with sodium silicate deposition (SS) and compare them with surfaces modified by dual-acid etched (AS) and with machined surface (MS). Methods: thirty rabbits received two implants each (one for each tibia). After 30, 60 and 90 days postoperative, the implants were removed by reverse torque for biomechanical analysis and surfaces were analyzed by scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). Results: the mean values of reverse torque at 30, 60 and 90 days postoperative were respectively 24.60, 43.60 e 60.40 N.cm to MS, 43.00, 68.20 e 63.80 N.cm to AS group, 59.80, 76.60 e 78.00 N.cm to LS group and 63.00, 75.40 e 76.60 N.cm to SS group. At 30 days, LS and SS groups showed statistically significant difference (p<0.05) compared to the other groups. At 60 days, LS and SS groups showed statistically significant difference (p<0.05) when compared to MS. Conclusions: it was concluded that SL and SS implants' biomechanical and topographical properties increased bone-implant interaction when compared to the AS and MS implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The surface of dental implants is an important factor for osseointegration process and different methods of surface treatment have been described. Objective: To investigate the bone apposition in implant surface treated with sandblasting and acid-etching. Material and methods: Ten rabbits were selected and received one implant treated with method I in the left tibia and one implant treated with method II in the right tibia. Then, twenty implants were divided in two groups, according to methods of sandblasting and acid-etching (method I and method II). After 7, 14, 30, 45 and 60 days, tibias were retrieved and submitted to histotechnical procedures. The percentages of bone–implant contact (BIC) and bone area between threads (BABT) were determined throughout histomorphometric analysis and bone apposition was detected in implants of both groups. Results: In BABT measurements, an increase was observed after 45 and 60 days in the method II, compared to method I and no differences were found after 7, 14 and 30 days. In BIC measurements, an increase was detected with method II at 45 days when compared to method I. No differences between groups in BIC values were observed after 7, 14, 30 and 60 days. Conclusion: Our data demonstrated that implants treated with the method II presented increase in the contact between bone and implant after 45 days compared to method I. Moreover, with concern to bone area between threads, it was observed an increased in the method II after 45 and 60 days. However, both groups can be successfully used as a therapeutic strategy to rehabilitation of edentulous patients. Then, further experiments are needed to evaluate, in depth, the putative differential role of each surface treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the study was to use scanning electron microscopy and energy dispersive x-ray spectrometry to assess possible morphologic and chemical changes after performing double-insertion and pullout tests of implants of different shapes and surface treatments. Four different types of implants were used—cylindrical machined-surface implants, cylindrical double-surface–treated porous implants, cylindrical surface-treated porous implants, and tapered surface-treated porous implants—representing a total of 32 screws. The implants were inserted into synthetic bone femurs, totaling 8 samples, before performing each insertion with standardized torque. After each pullout the implants were analyzed by scanning electron microscopy and energy dispersive x-ray spectrometry using a universal testing machine and magnified 35 times. No structural changes were detected on morphological surface characterization, only substrate accumulation. As for composition, there were concentration differences in the titanium, oxygen, and carbon elements. Implants with surface acid treatment undergo greater superficial changes in chemical composition than machined implants, that is, the greater the contact area of the implant with the substrate, the greater the oxide layer change. In addition, prior manipulation can alter the chemical composition of implants, typically to a greater degree in surface-treated implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this study was to review the literature on the systems used to decontaminate the implant's surface. Different instruments have been proposed, but there is no agreement in the literature about which methods would be more efficient with no damage to the implant surface. It was reported the use of plastic, carbon fiber, stainless-steel and titanium curettes and also the use of other systems such as ultrasonic points with different tips, rubber cups and air abrasion. Literature review: In most of the studies, the injury caused on the titanium surface at the time of instrumentation was examined. In others, the cell adhesion on the titanium dental implants following instrumentation of the implant surface was observed. Moreover, to enhance cleaning around implants, ultrasonic systems were recently tested. Conclusion: Metal instruments can lead to major damage to implant surface, therefore, they are not indicated for decontamination of dental implants surfaces. Furthermore, non-metallic instruments, such as plastic curettes, rubber cups, air abrasion and some ultrasonic systems seem to be better choices to remove calculus and plaque of the sub- and supra-gingival peri-implant area. It is noteworthy that more studies evaluating the effects of these systems are required to establish best practices to be used in the treatment of patients with dental implants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Orthodontic mini-implants are used in clinical practice to provide efficient and aesthetically-pleasing anchorage. AIM: To evaluate the hardness Vickers hardness and chemical composition of mini-implant titanium alloys from five commercial brands. METHODS: Thirty self-drilling mini-implants, six each from the following commercial brands, were used: Neodent NEO, Morelli MOR, Sin SIN, Conexão CON, and Rocky Mountain RMO. The hardness and chemical composition of the titanium alloys were performed by the Vickers hardness test and energy dispersive X-ray spectroscopy, respectively. RESULTS: Vickers hardness was significantly higher in SIN implants than in NEO, MOR, and CON implants. Similarly, VH was significantly higher in RMO implants than in MOR and NEO ones. In addition, VH was higher in CON implants than in NEO ones. There were no significant differences in the proportions of titanium and aluminum in the mini-implant alloy of the five commercial brands. Conversely, the proportion of vanadium differed significantly between CON and MOR/NEO implants. CONCLUSIONS: Mini-implants of different brands presented distinct properties of hardness and composition of the alloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In uncemented Ti6Al4V hip implants, the bone-stem interface is subjected to cyclic loading motion driven by the daily activities of the patients, which may lead to the complete failure of the implant in the long term. It may also compromise the proliferation and differentiation processes of osteoblastic cells (bone-forming cells). The main objective of this work is to approach for the first time the role of these organic materials on the bio-tribocorrosion mechanisms of cultured Ti6Al4V alloys. The colonized materials with MG63 osteoblastic-like cells were characterized through cell viability/proliferation and enzymatic activity. Tribocorrosion tests were performed under a reciprocating sliding configuration and low contact pressure. Electrochemical techniques were used to measure the corrosion kinetics of the system, under free potential conditions. All tests were performed at a controlled atmosphere. The morphology and topography of the wear scar were evaluated. The results showed that the presence of an osteoblastic cell layer on the implant surface significantly influences the tribocorrosion behavior of Ti6Al4V alloy. It was concluded that the cellular material was able to form an extra protective layer that inhibits further wear degradation of the alloy and decreases its corrosion tendency.