102 resultados para surface thermal lens
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermogravimetry (TG), energy dispersive X-ray microanalysis (EDX), scanning electron microscopy (SEM), mapping surface and X-ray diffraction (XRD) were used for the study of solid-state reaction on Pt-15%Rh with electrodeposited mercury. The results suggest when heated the mercury film react with the Pt-15%Rh alloy to form intermetallics having different thermal stabilities indicated by three mass loss steps. The first mass loss step occurs between room temperature and 184 degrees C only the bulk Hg is removed and PtHg4, PtHg2 and RhHg2 were characterized by XRD. The second step, between 184 and 271 degrees C, was attributed to PtHg4 decomposition with formation of PtHg2 stabilized by RhHg2. The third step, between 271 and 340 degrees C, was attributed to decomposition of a solid-solution of PtHg2/RhHg2. The fourth step, between 340 and 600 degrees C, was ascribed to: (1) a thermal decomposition of PtHg2, formed by a PtHg eutectoid reaction (similar to 340 degrees C) on the surface and (2) Hg removal from a solid solution of Pt-15%Rh(Hg). (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
Objective. To determine the effects of different aging methods on the degradation and flexural strength of yttria-stabilized tetragonal zirconia (Y-TZP)Methods. Sixty disc-shaped specimens (0, 12 mm; thickness, 1.6 mm) of zirconia (Vita InCeram 2000 YZ Cubes, VITA Zahnfabrik) were prepared (ISO 6872) and randomly divided into five groups, according to the aging procedures (n=10): (C) control; (M) mechanical cycling (15,000,000 cycles/3.8 Hz/200N); (T) thermal cycling (6,000 cycles/5-55 degrees C/30 s); (TM) thermomechanical cycling (1,200,000 cycles/3.8 Hz/200N with temperature range from 5 C to 55 C for 60s each); (AUT) 12h in autoclave at 134 degrees C/2 bars; and (STO) storage in distilled water (37 degrees C/400 days). After the aging procedures, the monoclinic phase percentages were evaluated by X-ray diffraction (XRD), and topographic surface analysis was performed by 3D profilometry. The specimens were then subjected to biaxial flexure testing (1 mm/min, load 100 kgf, in water). The biaxial flexural strength data (MPa) were analyzed by 1-way ANOVA and Tukey's test (alpha = 0.05). The data for monoclinic phase percentage and profilometry (Ra) were analyzed by Kruskal-Wallis and Dunn's tests.Results. ANOVA revealed that flexural strength was affected by the aging procedures (p = 0.002). The M (781.6 MPa) and TM (771.3 MPa) groups presented lower values of flexural strength than did C (955 MPa), AUT (955.8 MPa), T (960.8 MPa) and STO (910.4 MPa). The monoclinic phase percentage was significantly higher only for STO (12.22%) and AUT (29.97%) when compared with that of the control group (Kruskal-Wallis test, p = 0.004). In addition, the surface roughnesses were similar among the groups (p = 0.165).Signcance. Water storage for 400 days and autoclave aging procedures induced higher phase transformation from tetragonal to monoclinic; however, they did not affect the flexural strength of Y-TZP ceramic, which decreased only after mechanical and thermomechanical cycling. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study sought to assess the use of chlorhexidine with several excipients as a dentin surface treatment and its effect on marginal adaptation of class V restorations with current-generation dentin bonding agents. A total of 120 human third molars were selected and allocated into 12 groups, with standardized buccal class V restorations randomly divided into preconditioned dentin rinsed with: water; water + chlorhexidine; ethanol; or ethanol + chlorhexidine. After rinsing of dentin (previously conditioned with 35% phosphoric acid) with the test solutions, the Adper single bond 2, prime and bond 2.1, and Excite bonding systems were applied randomly. Restorations were performed with FiltekTM Z350 XT composite resin. The resulting specimens were subjected to thermal and mechanical load cycling. Quantitative analysis of marginal adaptation was performed on epoxy replicas by means of scanning electron microscopy. Results were assessed by means of the Kruskal-Wallis test (percentages of continuous margins) and Wilcoxon test (differences between percentages of continuous margins before and after thermal cycling and mechanical loading), at a significance level of p < 0.05. Outcomes in the chlorhexidine-treated groups were not superior to those obtained with other treatments.
Resumo:
In this study the effects of thermal and mechanical cycles on the hardness and roughness of artificial teeth were evaluated. Materials and Methods:Specimens were prepared and stored in distilled water at 37ºC for 48 hours (n=10).The hardness and roughness readings were made in the following time intervals, according to each group:G1: after specimen storage in distilled water at 37°C for 48 hours; G2: after 600.000 constant mechanical cycles; G3: after 1.200.000 constant mechanical cycles; G4: after 2.500 thermalcycling baths, alternated between hot water (55°C) and cold water (5°C) and G5: after 5.000 thermalcycling baths, alternated between hot water (55°C) and cold water (5°C). After cycling and storage procedures, the specimens of each group were submittedto surface roughness and hardness readouts. Statistical evaluation was performed by three-way analysis of variance, complemented by the Tukey multiple comparisons of means test. The level of significance adopted was 5%. There was no significant difference between G1, G4 and G5 as regards mean roughness of different brands of artificial teeth. Groups G2 and G3 showed higher mean roughness values, and generally equivalent values in all time intervals, except for Trilux (G3> G2). Significant differences in hardness values were observed in different brands of artificial teeth, and differences in values after thermal and mechanical cycling. In conclusion, our findings suggest that thermal cyclingdid not change the roughness of the artificial teeth tested, but after the mechanical cycling the roughness values increased. Thermal and mechanical cycling influenced the hardness of the artificial teeth tested.
Resumo:
The aim of the study was to evaluate the effect of thermal cycling on the shear bond strength of the porcelain/Ti-6Al-4V interfaces prepared by two different processing routes and metallic surface conditions. Polished and SiO2 particle abraded Ti-6Al-4V alloy and Triceram bonder porcelain were used to produce the interfaces. Porcelain-to-metal specimens were processed by conventional furnace firing and hot pressing. Thermal cycling was performed in Fusayama's artificial saliva for 5000 cycles between 5 +/- 1 and 60 +/- 2 degrees C. After thermal cycling, shear bond tests were carried out by using a custom-made stainless steel apparatus. The results were analyzed using t-Student test and non-parametric Kruskal-Wallis test (p<0.01). Most of the polished-fired specimens were fractured during thermal cycling; thus, it was not possible to obtain the shear bond strength results for this group. Sandblasted-fired, polished-hot pressed, and sandblasted-hot pressed specimens presented the shear bond strength values of 76.2 +/- 15.9, 52.2 +/- 23.6, and 59.9 +/- 22.0 MPa, respectively. Statistical analysis indicated that thermal cycling affected the polished specimens processed by firing, whereas a significant difference was not observed on the other groups. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This study was conducted to determine the effect of the air temperature variation on the mean surface temperature (MST) of 7-to 35-day-old broiler chickens using infrared thermometry to estimate MST, and to study surface temperature variation of the wings, head, legs, back and comb as affected by air temperature and broiler age. One hundred Cobb(R) broilers were used in the experiment. Starting on day 7, 10 birds were weekly selected at random, housed in an environmental chamber and reared under three distinct temperatures (18, 25 and 32 degrees C) to record their thermal profile using an infrared thermal camera. The recorded images were processed to estimate MST by selecting the whole area of the bird within the picture and comparing it with the values obtained using selected equations in literature, and to record the surface temperatures of the body parts. The MST estimated by infrared images were not statistically different (p > 0.05) from the values obtained by the equations. MST values significantly increased (p < 0.05) when the air temperature increased, but were not affected by bird age. However, age influenced the difference between MST and air temperature, which was highest on day 14. The technique of infrared thermal image analysis was useful to estimate the mean surface temperature of broiler chickens.