264 resultados para sistema de manejo de solo
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
Research has been conducted to identify the best nitrogen (N) rate for maize in most diverse types of soil management. However, there is no agreement on the results, once the dynamic of N is influenced by soil management and cover crops. This study evaluated dry mass production and nutrient uptake by cover crops, agronomic parameters and grain yield of maize in response to soil management and N rates. Field trials were carried out in Selvíria, Mato Grosso do Sul State, Brazil, in the growing seasons of 2009/2010 and 2010/2011, on a clayey Rhodic Haplustox (20º 20' S and 51º 24' W, 340 m asl). Thirty-six treatments were established with four replications, in a randomized blocks design, with the combination of cover crops (millet, Crotalaria juncea and millet + Crotalaria juncea), soil management systems (tillage with chisel plow + lightweight disking, heavy disking + lightweight disking, and no-tillage) and topdressing N rates (0, 60, 90 e 120 kg ha-1 - urea as source). Maize hybrid DKB 350 YG® was used and N applied at stage V5 (fifth expanded leaf). A linear increase with the increase of N rates was observed for chlorophyll leaf index, leaf N content, ear length and diameter, and grain weight and yield. Previously grown sunn hemp and millet + sunn hemp grown, associated with 120 kg ha-1 N for maize, induced a higher grain yield after two growing seasons.
Resumo:
Common bean grown in no-tillage (NT) systems has increased markedly in Brazil. Thus, to optimize the fertilizer recommendations, it is important to know the nutritional requirements of this crop when grown under new and established NT systems, which can change the nutrient availability and crop response to nitrogen (N) fertilization. The objective was to evaluate the extraction and exportation of nutrients by common bean as function of N fertilization on soil under new and established NT systems. The experiment was carried out in two agricultural years, on a Red Nitosol (Alfisol) in Botucatu, São Paulo State, Brazil. A randomized complete block design was used in a split-plot scheme with four replications. The plots consisted of areas under NT systems after different periods of adoption and the subplots of four forms of N application to common bean (T0: control, without nitrogen; T1: 60 kg ha-1 before sowing; T2: 60 kg ha-1 sidedressed at V4 stage; and T3: 60 kg ha-1 before sowing + 60 kg ha-1 sidedressed). The following properties were evaluated: shoot dry matter, nutrient concentration and accumulation in the shoot, grain yield, and nutrient concentration and exportation in the grains. The NT age did not affect common bean yield, nutrition and response to N management. Nitrogen application, especially before sowing, led to higher dry matter and nutrient accumulation by common bean. The nutrient concentration in grains was little influenced by N fertilization. Grain yield and nutrient exportation were highest after double N application (before sowing and sidedressed) or only sidedressed at V4.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
The objective of this work was to determine the load support capacity (LSC) of an Oxisol and, through compressibility models, relate it to wheel-soil interactions under management systems with one and three sugarcane crop cycles, with mechanized harvest. LSC evaluations were carried out on undisturbed soil samples, collected at planting row and bed, in four layers: 0.00-0.10, 0.10-0.20, 0.20-0.30, and 0.300.40 m. The contact area between wheels and soil was determined in order to estimate the contact pressure by agricultural machinery on the soil. Pre-consolidation pressures were used to determine LSC. The system with three cycles showed higher LSC than the system with only one cycle. The load support capacity of the soil evaluated in the range of friability is greater than the contact pressures applied to the soil by the wheels of the studied agricultural machines.
Resumo:
Pós-graduação em Agronomia - FEIS