121 resultados para rhodamine B dye


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The feasibility of the photobleaching of a textile azo dye, reactive orange 16 (C.I. 17757), in aqueous solution using titanium dioxide thin-film electrodes prepared by the sol-gel method was investigated. The best conditions for maximum photoelectrocatalytic degradation were found to be pH > 10 for Na2SO4 medium and pH < 6 for NaCl. In both situations, an applied potential of +1.0 V and low dye concentration are recommended, when 100% of color removal is obtained after 20 min of photoelectrocatalysis. The effects of side reaction pathway on the degradation rate of dye in sulfate and chloride medium were presented and the best performance are optimized to situations closed to that verified in the textile effluent. The influence of variables as applied potential, pH, supporting electrolyte and dye concentration on the kinetics of photoelectrochemical degradation also were investigated. Oxalic acid is identified by HPLC and UV-Vis spectrophotometric methods as the main degradation product generated after 180 min of photoelectrocatalysis of 4 x 10(-5) mol l(-1) dye in sodium sulphate pH 12 and NaCl pH 4.0 and a maximum reduction of 56 and 62% TOC was obtained, respectively. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work shows the chemical characterization of a dye processing plant effluent that was contributing to the mutagenicity previously detected in the Cristais river, São Paulo, Brazil, that had an impact on the quality of the related drinking water. The mutagenic dyes Disperse Blue 373, Disperse Orange 37 and Disperse Violet 93, components of a Black Dye Commercial Product (BDCP) frequently used by the facility, were detected by thin layer chromatography (TLC). The blue and orange dyes were quantified by high performance liquid chromatography (HPLC/DAD) in a raw and treated effluent samples and their contribution to the mutagenicity was calculated based on the potency of each dye for the Salmonella YG1041. In the presence of S9 the Disperse Blue 373 accounted for 2.3% of the mutagenic activity of the raw and 71.5% of the treated effluent. In the absence of S9 the Disperse Blue 373 accounted for 1.3% of the mutagenic activity of the raw and 1.5% of the treated effluent. For the Disperse Orange 37, in the presence of S9, it contributed for 0.5% of the mutagenicity of the raw and 6% of the treated effluent. In the absence of S9; 11.5% and 4.4% of the raw and treated effluent mutagenicity, respectively. The contribution of the Disperse Violet 93 was not evaluated because this compound could not be quantified by HPLC/DAD. Mutagenic and/or carcinogenic aromatic amines were also preliminary detected using gas chromatograph/mass spectrometry in both raw and treated and are probably accounting for part of the observed mutagenicity. The effluent treatment applied by the industry does not seem to remove completely the multagenic compounds. The Salmomella/microsome assay coupled with TLC analysis seems to be an important tool to monitor the efficiency of azo dye processing plant effluent treatments. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, electrochemical and photo-assisted electrochemical processes are used for color, total organic carbon (TOC) and chemical oxygen demand (COD) degradation of one of the most abundant and strongly colored industrial wastewaters, which results from the dyeing of fibers and fabrics in the textile industry. The experiments were carried out in an 18L pilot-scale tubular low reactor with 70% TiO2/30% RuO2 DSA. A synthetic acid blue 40 solution and real dye house wastewater, containing the same dye, were used for the experiments. By using current density of 80 mA cm(-2) electrochemical process has the capability to remove 80% of color, 46% of TOC and 69% of COD. When used the photochemical process with 4.6 mW cm(-2) of 254nm UV-C radiation to assist the electrolysis, has been obtained 90% of color, 64% of TOC and 60% of COD removal in 90 minutes of processing; furthermore, 70% of initial color was degraded within the first 15 minutes. Experimental runs using dye house wastewater resulted in 78% of color, 26% of TOC and 49% of COD in electrolysis at 80 mA cm(-2) and 90 min; additionally, when photo-assisted, electrolysis resulted in removals of 85% of color, 42% of TOC and 58% of COD. For the operational conditions used in this study, color, TOC and COD showed pseudo-first-order decaying profiles. Apparent rate constants for degradation of TOC and COD were improved by one order of magnitude when the photo-electrochemical process was used.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The indigo dye is extensively used by textile industries and is considered a recalcitrant substance, which causes environmental concern. Chemical products used on textile processing, which affect the environment through effluents, can be voluminous, colored and varied. Vat textile dyes, like indigo, are often used and dye mainly cellulosic fibers of cotton. Decolorization of this dye in liquid medium was tested with ligninolytic basidiomycete fungi from Brazil. Decolorization started in a few hours and after 4 days the removal of dye by Phellinus gilvus culture was in 100%, by Pleurotus sajor-caju 94%, by Pycnoporus sanguineus 91% and by Phanerochaete chrysosporium 75%. No color decrease was observed in a sterile control. Thin layer chromatography of fungi culture extracts revealed only one unknown metabolite of Rf = 0.60, as a result of dye degradation. (C) 2001 Published by Elsevier B.V. B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Remazol brilliant orange 3R shows only a voltammetric peak for the reduction of the azo group. No peak was observed for the reduction of the sulfatoethylsulfone or vinylsulfone reactive groups. The reduction of a pre-protonated ate group involving a two-electron process, gives a hydrate derivative in acidic solution. In alkaline solution the reduction process occurs at more negative potential with the formation of an unstable hydrate compound which decomposes via HN-NH bond cleavage and loss of a sulfate group. Optimum conditions are given for the cathodic stripping voltammetric determination of dir: dye in aqueous solution. The optimum accumulation potential and time were 0 V and up to 60 s, respectively. Linear calibration graphs were obtained from 30 to 300 ng ml(-1) in pH 4 and 6.2 to 62 ng ml(-1) in pH 10. The limit of determination obtained was 1.5 ng ml(-1) (pH 10). The coefficient of variation was 2.6% (n = 7) at 62 ng ml(-1) of the reactive dye. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new architecture for dye-sensitized solar cells is employed, based on a nanostructured transparent conducting oxide protruding from the substrate, covered with a separate active oxide layer. The objective is to decrease electron-hole recombination. The concept was tested by growing branched indium-tin oxide nanowires on glass using pulsed laser deposition followed by deposition of a sputtered titanium dioxide layer covering the wires. The separation of charge generation and charge transport functions opens many possibilities for dye-sensitized solar cell optimization. (c) 2007 Acta Materialia. Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Photoelectrocatalytic degradation of metallophtalocyanine reactive dye (turquoise blue 15) was performed using a Ti/TiO2 thin film photoanode prepared by sol-get method. Hundred percent of color removal and almost complete mineralization (95% at pH 2 and 85% at pH 8) where achieved after 6 h of photolectrocatalytic oxidation of 2.5 x 10(-5) mol L-1 AT15 dye in Na2SO4 mol L-1 under E = +1.2 V versus SCE. The method limitation occurs at dye concentration higher than 4 x 10-5 mol L-1, where the degradation rate becomes markedly slower. An important improvement in color removal and TOC reduction for 1 x 10(-3) mol L-1 metallophtalocyanine dye was achieved using a combined process. After 4 h of potential controlled electrolysis at -1.2 V on a cathode of platinum followed by 6 h of photoelectrocatalytic oxidation leads to 100% of color removal and 83% of TOC decay and eletrodeposition of 69% of the released copper originally presented as copperphtalocyanine complex, by electrodeposition on the cathode without any other treatment. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrically Detected Magnetic Resonance (EDMR) was used to investigate the influence of dye doping molecules on spin-dependent exciton formation in Aluminum (III) 8-hydroxyquinoline (Alq(3)) based OLEDs with different device structures and temperature ranges. 4-(dicyanomethylene)-2-methyl-6-{2-[(4-diphenylamino-phenyl]ethyl}-4H-pyran (DCM-TPA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene) were used as dopants. A strong temperature dependence have been observed for doped OLEDs, with a decrease of two orders of magnitude in EDMR signal for temperatures above similar to 200 K. The signal temperature dependence were fitted supposing different spin-lattice relaxation processes. The results suggest that thermally activated vibrations of dopants molecules induce spin pair dissociation, reducing the signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate random lasing action in a biopolymer that has large potential for medical applications. The novel random laser consists of nanofibers of bacterial cellulose impregnated with silica nanoparticles and Rhodamine 6G.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Azo dyes, the most widely used family of synthetic dyes, are often employed as colorants in areas such as textiles, plastics, foods/drugs/cosmetics, and electronics. Following their use in industrial applications, azo dyes have been found in effluents and various receiving waters. Chemical treatment of effluents containing azo dyes includes disinfection using chlorine, which can generate compounds of varying eco/genotoxicity. Among the widely known commercial azo dyes for synthetic fibers is C.I. Disperse Red 1. While this dye is known to exist as a complex mixture, reports of eco/genotoxicity involve the purified form. Bearing in mind the potential for adverse synergistic effects arising from exposures to chemical mixtures, the aim of the present study was to characterize the components of commercial Disperse Red 1 and its chlorine-mediated decoloration products and to evaluate their ecotoxicity and mutagenicity. In conducting the present study, Disperse Red 1 was treated with chlorine gas, and the solution obtained was analyzed with the aid of LC-ESI-MS/MS to identify the components present, and then evaluated for ecotoxicity and mutagenicity, using Daphnia similis and Salmonella/microsome assays, respectively. The results of this study indicated that chlorination of Disperse Red 1 produced four chlorinated aromatic compounds as the main products and that the degradation products were more ecotoxic than the parent dye. These results suggest that a disinfection process using chlorine should be avoided for effluents containing hydrophobic azo dyes such commercial Disperse Red 1. © 2012 Elsevier B.V..

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes the photoelectrochemical hydrogen generation during a photodegradation of an organic compound. For this, it was chosen the reactive black 5 dye as a model of organic pollutant and its oxidation under TiO2 nanotube in a two compartment cell. The photoelectrocatalysis is conducted in 0.1 mol L-1 Na2SO4 pH 6 medium under photoanode biased at +1.0 V (SCE) and activated by UV and visible light using 150W Xe-Arc lamp (Oriel) and 125 W Hg lamp (Osram). The concomitant hydrogen production was monitored at cathodic compartment using a Pt cathode. Using optimized condition of Na2SO4 0.1 mol L-1 pH 6 as supporting electrolyte, applied potential of +1.0V it was verified 100% of discoloration and 72% of TOC removal of 1.0 x 10(-5) mol L-1 Reactive Black 5 dye after 120 min of treatment (rate constant of 10.6 x10(-2) min(-1)). The concomitant hydrogen generation was 44% in this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)