94 resultados para optical quenching of photoconductivity
Resumo:
In this work, we report on the synthesis of MgMoO4 crystals by oxide mixed method. The powder was calcined at 1100 degrees C for 4h and analyzed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Field emission gun scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and Photoluminescence (PL) measurement. XRD analyses revealed that the MgMoO4 powders crystallize in a monoclinic structure and are free secondary phases. UV-vis technique was employed to determine the optical band gap of this material. MgMoO4 crystals exhibit an intense PL emission at room temperature with maximum peak at 579 nm (yellow region) when excited by 350 nm wavelength at room temperature.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A polymeric precursor solution was used to deposit pure and Mg doped LiNbO3 thin films on sapphire substrates by spin-coating. The effects of magnesium addition on crystallinity, morphology and optical properties of the annealed films were investigated. X-ray diffraction patterns indicate the oriented growth of the films. Phi-scan diffraction evidenced the epitaxial growth with two in-plane variants. AFM studies show that the films are very homogeneous, dense and present smooth surfaces. The refractive index and optical losses obtained by the prism coupling method were influenced by the magnesium addition.
Resumo:
Zinc oxide (ZnO) and aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass and silicon substrates by RF magnetron sputtering using a zinc-aluminum target. Both films were deposited at a growth rate of 12.5 nm/min to a thickness of around 750 nm. In the visible region, the films exhibit optical transmittances which are greater than 80%. The optical energy gap of ZnO films increased from 3.28 eV to 3.36 eV upon doping with Al. This increase is related to the increase in carrier density from 5.9 × 1018 cm-3 to 2.6 × 1019 cm-3. The RMS surface roughness of ZnO films grown on glass increased from 14 to 28 nm even with only 0.9% at Al content. XRD analysis revealed that the ZnO films are polycrystalline with preferential growth parallel to the (002) plane, which corresponds to the wurtzite structure of ZnO.