224 resultados para nutrients removal
Resumo:
The biooxidation of ferrous ion into ferric ion by Acidithiobacillus ferrooxidans can be potentially used for the removal of H2S from industrial gases. In this work, Fe3+ ions were obtained through the oxidation of Fe2+ using the LR strain of At. ferrooxidans immobilized in PVC stands in a pilot-scale bioreactor, while H2S was removed in an absorption tower equipped with Rasching rings. At. ferrooxidans LR strain cells were immobilized by inoculating the bacterium in a Fe2+-mineral medium and percolating it through the support. After complete Fe2+ oxidation, which took around 90 h, the reactor was washed several times with sulfuric acid (pH 1.7) before a new cycle was started. Four additional cycles using fresh Fe2+ mineral medium were then run. During these colonization cycles, the time required for complete iron oxidation decreased, dropping to about 60 h in the last cycle. The batch experiments in the H2S gas removal trials resulted in a gas removal rate of about 98-99% under the operational conditions employed. In the continuous experiments with the bioreactor coupled to the gas absorption column, a gas removal efficiency of almost 100% was reached after 500 min. Precipitate containing mainly sulfur formed during the experimental trial was identified by EDX. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
This study determined the size of aluminum oxide particles used in an air abrasion system that is able to remove carious dentin tissue with maximum preservation of sound structure. Thirty extracted and carious-free third molars were used in this study. The dentin sample was obtained by sectioning the middle of the crown longitudinal to the long axis of the tooth in a mesio-distal direction. One half of the crown corresponded to the sound dentin group (SD), while the other half was used to develop artificial caries, constituting the, carious dentin group (CD). The specimens were air abraded for 15 seconds. The SD and CD groups were each randomly divided into three subgroups (N=10) according to the particle diameter employed (27, 50 and 125 pm). The prepared cavity was perpendicularly cut in half, and the profiles of all hemi-fragments were observed using SEM microscopy. The cavity measurements were made using a modified cephalometric analysis. The 27, 50 and 125 pun aluminum oxide particles did not present selectivity in the removal of carious dentin. However, when using the air abrasive technique for carious dentin treatment, the use of 27 and 50 pun aluminum oxide particles is recommended, due to their capacity to remove less sound tissue than the 125 pun particles.
Resumo:
Litter production was measured for two years (november 1986 to october 1988) in a 29 year -old Pinus elliottii var. elliottii stand in differents resin treatments. Needle production comprised 9 to 93% of total litter fall, while the other categories (branches, barks, seeds and cones) were not significant. Maximum litterfall occurred in march to may 1987 (autumn) and the minimum was in august 1988 (winter) for all treatments and the control. No relationship appeared between annual litterfall and environmental factors, although there was a tendence to exhibit two periods of production: one in summer and other in winter. The results showed that in two years of resin extraction was not sufficient in interfering the litter fall and consequently the productivity.
Resumo:
Annual and monthly quantities of nutrients wich returned to the soil through litter fall in Pinus elliottii Engelm. var. elliottii stand were estimated durint a two years period, in Experimental Station of Mogi-Guacu, SP. From the trees of the stand was extracted oleoresin according two differents techniques and control. The annual average of nutrients that returned to the soil was 72.2 Kg/ha, in following order: N > Ca > K > Mg > P. No relationship appeared between nutrient concentrations plus quantities when they were compared with oleoresin yields treatments and control. The differences in annual quantities were possibly due to climatic factors. The soil profile showed short concentrations in nutrient contents. Thus, the forest may be suffering by nutrient deficiences.
Resumo:
In this paper, an anisotropic nonlinear diffusion equation for image restoration is presented. The model has two terms: the diffusion and the forcing term. The balance between these terms is made in a selective way, in which boundary points and interior points of the objects that make up the image are treated differently. The optimal smoothing time concept, which allows for finding the ideal stop time for the evolution of the partial differential equation is also proposed. Numerical results show the proposed model's high performance.
Resumo:
Multifractal analysis is now increasingly used to characterize soil properties as it may provide more information than a single fractal model. During the building of a large reservoir on the Parana River (Brazil), a highly weathered soil profile was excavated to a depth between 5 and 8 m. Excavation resulted in an abandoned area with saprolite materials and, in this area, an experimental field was established to assess the effectiveness of different soil rehabilitation treatments. The experimental design consisted of randomized blocks. The aim of this work was to characterize particle-size distributions of the saprolite material and use the information obtained to assess between-block variability. Particle-size distributions of the experimental plots were characterized by multifractal techniques. Ninety-six soil samples were analyzed routinely for particle-size distribution by laser diffractometry in a range of scales, varying from 0.390 to 2000 mu m. Six different textural classes (USDA) were identified with a clay content ranging from 16.9% to 58.4%. Multifractal models described reasonably well the scaling properties of particle-size distributions of the saprolite material. This material exhibits a high entropy dimension, D-1. Parameters derived from the left side (q > 0) of the f(alpha) spectra, D-1, the correlation dimension (D-2) and the range (alpha(0)-alpha(q+)), as well as the total width of the spectra (alpha(max) - alpha(min)) all showed dependence on the clay content. Sand, silt and clay contents were significantly different among treatments as a consequence of soil intrinsic variability. The D, and the Holder exponent of order zero, alpha(0), were not significantly different between treatments; in contrast, D-2 and several fractal attributes describing the width of the f(alpha) spectra were significantly different between treatments. The only parameter showing significant differences between sampling depths was (alpha(0) - alpha(q+)). Scale independent fractal attributes may be useful for characterizing intrinsic particle-size distribution variability. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Suspended particles and dissolved substances in water provide reactive surfaces, influence metabolic activity and contribute to the net sediment deposition. It therefore plays an important part in the ecology and quality of the water mass. The water quality in reservoirs is crucial and it is naturally maintained by flushing and sedimentation, which continuously remove phosphorus from the water. In some reservoirs, however, these removal processes are countered by recycling of ions which could play a key role to start and/or maintain the eutrophic state. The combination of macro-, trace- and microanalysis techniques can be useful to trace pollution sources through a chemical fingerprint, whether be during an acute environmental disaster or a long-term release of pollutants. The water quality and total metal content of reservoir sediments were assessed in a reservoir, situated in the capital of the Parana State, in the South-Eastern part of Brazil. The goal of this paper was to determine the metal presence in the sediment and metal and ionic speciation in the Green River reservoir water. Water and bed sediment samples, collected from various sites during 2008 and 2009, were investigated using XRF, ICP-OES, ICP-MS, XRD and zeta potential measurements. Based on the results, the heavy metal concentration and chemical composition of the suspended matter in the water samples, as well as the sediment's chemical composition will be discussed.
Resumo:
We have investigated if a new LEDs system has enough efficient energy to promote efficient shear and tensile bonding strength resistance under standardized tests. LEDs 470 +/- 10 nm can be used to photocure composite during bracket fixation. Advantages considering resistance to tensile and shear bonding strength when these systems were used are necessary to justify their clinical use. Forty eight human extracted premolars teeth and two light sources were selected, one halogen lamp and a LEDs system. Brackets for premolar were bonded through composite resin. Samples were submitted to standardized tests. A comparison between used sources under shear bonding strength test, obtained similar results; however, tensile bonding test showed distinct results: a statistical difference at a level of 1% between exposure times (40 and 60 seconds) and even to an interaction between light source and exposure time. The best result was obtained with halogen lamp use by 60 seconds, even during re-bonding; however LEDs system can be used for bonding and re-bonding brackets if power density could be increased.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)