549 resultados para nellore
Resumo:
Scrotal circumference data from 47,605 Nellore young bulls, measured at around 18 mo of age (SC18), were analyzed simultaneously with 27,924 heifer pregnancy (HP) and 80,831 stayability (STAY) records to estimate their additive genetic relationships. Additionally, the possibility that economically relevant traits measured directly in females could replace SC18 as a selection criterion was verified. Heifer pregnancy was defined as the observation that a heifer conceived and remained pregnant, which was assessed by rectal palpation at 60 d. Females were exposed to sires for the first time at about 14 mo of age (between 11 and 16 mo). Stayability was defined as whether or not a cow calved every year up to 5 yr of age, when the opportunity to breed was provided. A Bayesian linear-threshold-threshold analysis via Gibbs sampler was used to estimate the variance and covariance components of the multitrait model. Heritability estimates were 0.42 +/- 0.01, 0.53 +/- 0.03, and 0.10 +/- 0.01, for SC18, HP, and STAY, respectively. The genetic correlation estimates were 0.29 +/- 0.05, 0.19 +/- 0.05, and 0.64 +/- 0.07 between SC18 and HP, SC18 and STAY, and HP and STAY, respectively. The residual correlation estimate between HP and STAY was -0.08 +/- 0.03. The heritability values indicate the existence of considerable genetic variance for SC18 and HP traits. However, genetic correlations between SC18 and the female reproductive traits analyzed in the present study can only be considered moderate. The small residual correlation between HP and STAY suggests that environmental effects common to both traits are not major. The large heritability estimate for HP and the high genetic correlation between HP and STAY obtained in the present study confirm that EPD for HP can be used to select bulls for the production of precocious, fertile, and long-lived daughters. Moreover, SC18 could be incorporated in multitrait analysis to improve the prediction accuracy for HP genetic merit of young bulls.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Heritability estimates and genetic correlations were obtained for body weight and scrotal circumference, adjusted, respectively, to 12 (BW12 and SC12) and 18 (BW18 and SC18) months of age, for 10 742 male Nellore cattle. The adjustments to SC12 and SC18 were made using a nonlinear logistic function, while BW12 and BW18 were obtained by linear adjustment. The contemporary groups (CGs) were defined from animals born on the same farm, in the same year and birth season. The mean heritability estimates obtained using the restricted maximum likelihood method in bi-trait analysis were 0.25, 0.25, 0.29 and 0.42 for BW12 BW18, SC12 and SC18, respectively. The genetic correlations were 0.30 +/- 0.11, 0.21 +/- 0.13, 0.21 +/- 0.11, -0.08 +/- 0.15, 0.16 +/- 0.12 and 0.89 +/- 0.04 between the traits BW12 and BW18; BW12 and SC12; BW12 and SC18; BW18 and SC12; BW18 and SC18; and SC12 and SC18. The heritability for SC18 was considerably greater than for SC12 suggesting that this should be included as a selection criterion. The genetic correlation between BW18 and SC12 was close to zero, indicating that these traits did not influence each other The contrary occurred between SC12 and SC18, indicating that selection using one of these could alter the other Because of the mean magnitudes of heritabilities in the various measurements of weight and scrotal perimeter it is suggested that the practice of individual selection for these traits is possible.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A synaptonemal complex (SC) study of specimens of Nellore and Gyr breeds of Bos taurus indicus was performed with the main objective to identify and determinate the frequency of abnormalities of SC and the frequency of cells with abnormalities. All animals analyzed had 29 autosomal bivalents and one sexual bivalent. The Nellore breed had 30.00% of cells with SC abnormalities while the Gyr breed had only 11.11%. Statistical analyses showed that there were not significant differences for the number of cells with abnormalities among the breeds studied. The subspecies Bos taurus indicus had 16.92% of cells showing abnormalities, being 62.82% of these abnormalities in zygotene and 37.18% in pachytene. Some aspects regarding the frequency of cells with abnormalities and the fertility of Nellore and Gyr breeds are discussed.
Resumo:
The objective was to evaluate the effects of plasma progesterone (P4) concentrations and exogenous eCG on ovulation and pregnancy rates of pubertal Nellore heifers in fixed-time artificial insemination (FTAI) protocols. In Experiment 1 (Exp. 1), on Day 0 (7 d after ovulation), heifers (n = 15) were given 2 mg of estradiol benzoate (EB) im and randomly allocated to receive: an intravaginal progesterone-releasing device containing 0.558 g of P4 (group 0.5G, n = 4); an intravaginal device containing 1 g of P4 (group 1G, n = 4); 0.558 g of P4 and PGF2α (PGF; 150 μg d-cloprostenol, group 0.5G/PGF, n = 4); or 1 g of P4 and PGF (group 1G/PGF, n = 3). On Day 8, PGF was given to all heifers and intravaginal devices removed; 24 h later (Day 9), all heifers were given 1 mg EB im. In Exp. 2, pubertal Nellore heifers (n = 292) were treated as in Exp. 1, with FTAI on Day 10 (30 to 36 h after EB). In Exp. 3, pubertal heifers (n = 459) received the treatments described for groups 0.5G/PGF and 1G/PGF and were also given 300 IU of eCG im (groups 0.5G/PGF/eCG and 1G/PGF/eCG) at device removal (Day 8). In Exp. 1, plasma P4 concentrations were significantly higher in heifers that received 1.0 vs 0.588 g P4, and were significantly lower in heifers that received PGF on Day 0. In Exp. 2 and 3, there were no significant differences among groups in rates of ovulation (65-77%) or pregnancy (Exp. 2: 26-33%; Exp. 3: 39-43%). In Exp. 3, diameter of the dominant ovarian follicle on Day 9 was larger in heifers given 0.558 g vs 1.0 g P4 (10.3 ± 0.2 vs 9.3 ± 0.2 mm; P < 0.01). In conclusion, lesser amounts of P4 in the intravaginal device or PGF on Day 0 decreased plasma P4 from Days 1 to 8 and increased diameter of the dominant follicle on Day 9. However, neither of these nor 300 IU of eCG on Day 8 significantly increased rates of ovulation or pregnancy. © 2011.
Resumo:
Background: The sequencing and publication of the cattle genome and the identification of single nucleotide polymorphism (SNP) molecular markers have provided new tools for animal genetic evaluation and genomic-enhanced selection. These new tools aim to increase the accuracy and scope of selection while decreasing generation interval. The objective of this study was to evaluate the enhancement of accuracy caused by the use of genomic information (Clarifide® - Pfizer) on genetic evaluation of Brazilian Nellore cattle. Review: The application of genome-wide association studies (GWAS) is recognized as one of the most practical approaches to modern genetic improvement. Genomic selection is perhaps most suited to the improvement of traits with low heritability in zebu cattle. The primary interest in livestock genomics has been to estimate the effects of all the markers on the chip, conduct cross-validation to determine accuracy, and apply the resulting information in GWAS either alone [9] or in combination with bull test and pedigree-based genetic evaluation data. The cost of SNP50K genotyping however limits the commercial application of GWAS based on all the SNPs on the chip. However, reasonable predictability and accuracy can be achieved in GWAS by using an assay that contains an optimally selected predictive subset of markers, as opposed to all the SNPs on the chip. The best way to integrate genomic information into genetic improvement programs is to have it included in traditional genetic evaluations. This approach combines traditional expected progeny differences based on phenotype and pedigree with the genomic breeding values based on the markers. Including the different sources of information into a multiple trait genetic evaluation model, for within breed dairy cattle selection, is working with excellent results. However, given the wide genetic diversity of zebu breeds, the high-density panel used for genomic selection in dairy cattle (Ilumina Bovine SNP50 array) appears insufficient for across-breed genomic predictions and selection in beef cattle. Today there is only one breed-specific targeted SNP panel and genomic predictions developed using animals across the entire population of the Nellore breed (www.pfizersaudeanimal.com), which enables genomically - enhanced selection. Genomic profiles are a way to enhance our current selection tools to achieve more accurate predictions for younger animals. Material and Methods: We analyzed the age at first calving (AFC), accumulated productivity (ACP), stayability (STAY) and heifer pregnancy at 30 months (HP30) in Nellore cattle fitting two different animal models; 1) a traditional single trait model, and 2) a two-trait model where the genomic breeding value or molecular value prediction (MVP) was included as a correlated trait. All mixed model analyses were performed using the statistical software ASREML 3.0. Results: Genetic correlation estimates between AFC, ACP, STAY, HP30 and respective MVPs ranged from 0.29 to 0.46. Results also showed an increase of 56%, 36%, 62% and 19% in estimated accuracy of AFC, ACP, STAY and HP30 when MVP information was included in the animal model. Conclusion: Depending upon the trait, integration of MVP information into genetic evaluation resulted in increased accuracy of 19% to 62% as compared to accuracy from traditional genetic evaluation. GE-EPD will be an effective tool to enable faster genetic improvement through more dependable selection of young animals.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Four experiments were conducted to evaluate hormonal strategies to induce ovulation in Nellore heifers. In experiment 1, heifers (N = 1039) received a controlled internal drug release (CIDR) of fourth use (CIDR-4) on Day -12 or no CIDR (CIDR-0). The CIDR was removed on Day 0 in the CIDR-4 treatment, and estrus detection and AI were performed from Days 1 to 7. On Day 8, heifers not detected in estrus were evaluated for CL presence and received the same treatment again, followed by estrus detection and AI from Days 21 to 27. All heifers in experiments 2 (N = 896), 3 (N = 839), and 4 (N = 948) received the CIDR-4 treatment on Day -12. In experiment 2, heifers were randomly assigned to a control group (no additional treatment) or to receive equine chorionic gonadotropin (eCG; 200 IU eCG im) on Day 0. In experiment 3, heifers received the same treatments as in experiment 2, or a treatment that included eCG and estradiol cypionate (ECP) (eCG+ECP; 200 IU im eCG plus 0.5 mg ECP im) on Day 0. In experiment 4, heifers received the treatments described in experiment 3 or only ECP (0.5 mg) on Day 0. In experiments 2 and 3, estrus detection and AI was performed from Days 1 to 7 and on Day 8, heifers not detected in estrus were evaluated for CL presence. In experiment 4, heifers were evaluated for presence of a CL between Days 10 and 14. In experiment 1 heifers treated with CIDR-4 had greater estrus detection, ovulation induction, and pregnancy rates than in the CIDR-0 group. In experiment 2, heifers treated with eCG had greater estrus detection, ovulation induction, and pregnancy rates in 7 days than heifers in the control group. In experiment 3, heifers treated with eCG+ECP had greater estrus detection, ovulation induction, and pregnancy rates than the control and eCG treatments. In experiment 4, ovulation induction was greater for heifers treated with eCG and eCG+ECP relative to control, but did not differ from the ECP treatment. In conclusion, the use of a CIDR of fourth use for 12 days and the addition of eCG and/or ECP at CIDR removal efficiently induced ovulation and increased pregnancy rates in prepubertal Nellore heifers. © 2013 Elsevier Inc.