228 resultados para luminescent excitation spectra


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flat-panel-display's (FPD) market and demand for highly efficient and colored luminescent films have been growing quickly. In this work, thin films were obtained from Pechini's solution by dip-coating. The green films were thermally treated at 873 K in order to get ZnO:Eu 1 at% thin film. A Schott(R) glass plate hydrothermally treated was used as substrate. The films have a mosaic shaped feature that was observed by optical microscopy. That feature is a result of substrate thermal treatment. The film deposition decreases the substrate transmittance in the visible range. When the F-7(0) -->L-5(6) (392nm) Eu3+ transition is excited, it is possible to detect emission from D-5(0) --> F-7(J) (J = 1, 2, 3 and 4) transitions. The D-5(0) --> F-7(2) transition is also observed by using ZnO excitation wavelengths indicating energy transfer from ZnO to Eu3+ ion. (C) 2003 Elsevier B.V. (USA). All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vibrational spectra of palladium phthalocyanine (PdPc) evaporated thin solid films are reported, including the resonance Raman scattering, surface-enhanced resonance Raman scattering (SERRS) and SERRS mapping of the film surface using micro-Raman spectroscopy with 633 nm laser radiation. SERRS of PdPc was obtained by evaporating an overlayer of Ag nanoparticles on to the PdPc film on glass. The SERRS enhancement factor is estimated as similar to10(4) with reference to PdPc evaporated films on glass. The molecular organization of the PdPc evaporated films was probed using transmission and reflection-absorption infrared spectra. It was established that a random molecular distribution found in PdPc evaporated films is independent of temperature. No evidence of thermal degradation due to thermal annealing was found in the films. Electronic absorption and emission spectra are also discussed. Copyright (C) 2002 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work reports on the preparation, structural and luminescent studies of nanosized up-converter phosphors Y2O2S:Yb(4%), Er(0.1%) and Y2O2S:Yb(4%), Tm(0.1%),both from polymeric and basic carbonate precursors. The precursors were submitted to a sulphuration process that was previously developed for oxysulfide preparation from basic carbonate. From XRD data, all phosphors presented the oxysulfide phase and the mean crystallite size estimated from the Scherrer formula in the range of 15-20 nm. Polymeric precursor leads to the smallest crystallite size independent on the doping ion. SEM and TEM results confirmed that basic carbonate leads to spherical particles with narrow size distribution and mean diameter of 150 nm, and polymeric precursor smaller spherical particles with diameter between 20 and 40 nm. Up-conversion studies under 980 nm laser excitation showed that Er-doped phosphors present strong green emission related to H-2(11/2), S-4(3/2) --> I-4(15/2) Er transitions as well as the red ones, F-4(9/2) --> I-4(15/2). Tm-doped samples show strong blue emission assigned to (1)G(4) --> H-3(6) and also the red ones, related to (1)G(4) --> F-3(4). Therefore, the sulphuration method was successfully applied to prepare nanosized and nanostructured blue and green up-converter oxysulfide phosphors starting from basic carbonate and polymeric precursors. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present measurements of the non-linear oscillations of a portal frame foundation for a non-ideal motor. We consider a three-time redundant structure with two columns, clamped in their bases and a horizontal beam. An electrical unbalanced motor is mounted at mid span of the beam. Two non-linear phenomena are studied: a) mode saturation and energy transfer between modes; b) interaction between high amplitude motions of the structure and the rotation regime of a real limited power motor. The dynamic characteristics of the structure were chosen to have one-to-two internal resonance between the anti-symmetrical mode (sway motions) and the first symmetrical mode natural frequencies. As the excitation frequency reaches near resonance conditions with the 2nd natural frequency, the amplitude of this mode grows up to a certain level and then it saturates. The surplus energy pumped into the system is transferred to the sway mode, which experiences a sudden increase in its amplitude. Energy is transformed from low amplitude high frequency motion into high amplitude low frequency motion. Such a transformation is potentially dangerous.We consider the fact that real motors, such as the one used in this study, have limited power output. In this case, this energy source is said to be non-ideal, in contrast to the ideal source whose amplitude and frequency are independent of the motion of the structure. Our experimental research detected the Sommerfeld Effect: as the motor accelerates to reach near resonant conditions, a considerable part of its output energy is consumed to generate large amplitude motions of the structure and not to increase its own angular speed. For certain parameters of the system, the motor can get stuck at resonance not having enough power to reach higher rotation regimes. If some more power is available, jump phenomena may occur from near resonance to considerably higher motor speed regimes, no stable motions being possible between these two.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have obtained the photoconductivity (PC) excitation spectrum for a stretch-oriented poly(paraphenylene vinylene) film over a wide spectral range (up to 5 eV). The measurements were performed in the surface cell configuration with the electric field parallel or perpendicular to the stretch direction. Although the sample had a stretch ratio of similar to 4, the dark conductivity and the steady-state photoconductivity were both about 40 and 20 times higher with the electric field parallel to the average chain direction, respectively. However, the shape of the PC excitation spectrum was independent of field direction and did not show a significant rise in the ultraviolet, as is usually observed for measurements in the photodiode configuration. The implications of these results to the charge photogeneration mechanism in conjugated polymers are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cassava starch has been shown to make transparent and colorless flexible films without any previous chemical treatment. The functional properties of edible films are influenced by starch properties, including chain conformation, molecular bonding, crystallinity, and water content. Fourier-transform infrared (FTIR) spectroscopy in combination with attenuated total reflectance (ATR) has been applied for the elucidation of the structure and conformation of carbohydrates. This technique associated with chemometric data processing could indicate the relationship between the structural parameters and the functional properties of cassava starch-based edible films. Successful prediction of the functional properties values of the starch-based films was achieved by partial least squares regression data. The results showed that presence of the hydroxyl group on carbon 6 of the cyclic part of glucose is directly correlated with the functional properties of cassava starch films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silica-titania planar waveguides of different thicknesses and compositions have been produced by radio-frequency sputtering and dip coating on silica substrates. Waveguides were also produced by silver exchange on a soda-lime silicate glass substrate. Brillouin scattering of the samples has been studied by coupling the exciting laser beam with a prism to different transverse-electric (TE) modes of the waveguides, and collecting the scattered light from the front surface. In multimode waveguides, the spectra depend on the m mode of excitation. For waveguides with a step index profile, two main peaks due to longitudinal phonons are present, apart from the case of the TE0 excitation, where a single peak is observed. The energy separation between the two peaks increases with the mode index. In graded-index waveguides, m-1 peaks of comparable intensities are observed. The spectra are reproduced very well by a model which considers the space distribution of the exciting field in the mode, a simple space dependence of the elasto-optic coefficients, through the value of the refraction index, and neglects the refraction of phonons. A single-fit parameter, i.e., the longitudinal sound velocity, is used to calculate as many spectra as is the number of modes in the waveguide. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The local environment of Er3+ ions in microporous titanosilicate ETS-10 and in synthetic narsarsukite and glassy materials obtained by calcination of ETS-10 has been investigated by EXAFS, Raman and photoluminescence spectroscopies. Er L-III-edge EXAFS studies of Er3+-doped ETS-10 support the view that the exchanged Er3+ ions reside close to the (negatively charged) TiO6 octahedra. In ETS-10, Er3+ is partially bonded to framework oxygen atoms and hydration water molecules. The Er...Ti distance (3.3 Angstrom) is similar to the Na...Ti distances (3.15-3.20 Angstrom) reported previously for Na-ETS-10. Although the exact location of the ErO6 units within the host structure of Er3+-doped synthetic narsarsukite is still an open question, it is most likely that Er3+ substitutes Ti4+ rather than Na+ ions. EXAFS spectroscopy indicates that no significant clustering of erbium atoms occurs in the titanosilicate samples studied. Evidence for the insertion of Er3+ ions in the framework of narsarsukite has been obtained by Raman spectroscopy. This is indicated by the increasing full-width at half-maximum (FWHM) of the 775 cm(-1) peak and the increasing intensity of the anatase peaks as the erbium content increases. In addition, as the narsarsukite Er3+ content increases a band at ca. 515 cm(-1) firstly broadens and subsequently a new peak appears at ca. 507 cm(-1).Er3+-doped narsarsukite exhibits a characteristic local vibrational frequency, (h) over bar omega ca. 330 cm(-1), with an electron-phonon coupling, g ca. 0.2, which constitutes additional evidence for framework Er3+ insertion. The number of lines in the infrared emission spectrum of synthetic narsarsukite indicates the presence of two optically-active erbium centres with very similar local environments and an average I-4(13/2) lifetime of 7.8 +/- 0.2 ms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrafast photoinduced absorption by infrared-active vibrational modes is used to detect charged solitons in oriented trans-polyacetylene. Soliton pairs are photogenerated within similar to250 fs with quantum efficiencies (phi(ch)) approaching unity. The excitation spectrum of phi(ch) shows an onset at similar to1.0 eV with a weak photon energy dependence up to 4.7 eV. The results are consistent with the ultrafast soliton formation predicted by Su and Schrieffer and with the Su-Scrieffer-Heeger threshold of 2E(g)/pi for soliton pair production. The recombination dynamics of charged solitons is very fast (initial decay<1 ps) with a modest dependence on the pump photon energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical spectroscopic properties of Tm3+-doped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) glass are reported. The absorption spectra were obtained and radiative parameters were determined using the Judd-Ofelt theory. Characteristics of excited states were studied in two sets of experiments. Excitation at 360 nm originates a relatively narrow band emission at 450 nm attributed to transition D-1(2)-->F-3(4) of the Tm3+ ion with photon energy larger than the band-gap energy of the glass matrix. Excitation at 655 nm originates a frequency upconverted emission at 450 nm (D-1(2)-->F-3(4)) and emission at 790 nm (H-3(4)-->H-3(6)). The radiative lifetimes of levels D-1(2) and H-3(4) were measured and the differences between their experimental values and the theoretical predictions are understood as due to the contribution of energy transfer among Tm3+ ions. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Luminescent spectra of Eu3+-doped sol-gel glasses have been analyzed during the densification process and compared according to the presence or not of aluminum as a codoping ion. A transition temperature from hydrated to dehydroxyled environments has been found different for doped and codoped samples. However, only slight modifications have been displayed from luminescence measurements beyond this transition. To support the experimental analysis, molecular dynamics simulations have been performed to model the doped and codoped glass structures. Despite no evidence of rare earth clustering reduction due to aluminum has been found, the modeled structures have shown that the luminescent ions are mainly located in aluminum-rich domains. The synthesis of both experimental and numerical analyses has lead us to interpret the aluminum effect as responsible for differences in structure of the luminescent sites rather than for an effective dispersion of the rare earth ions. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We performed temperature-dependent Raman scattering studies on K0.2Na0.8NbO3 ceramics and compared the results with those for NaNbO3. The wavenumbers associated with NbO6 vibrations suggest the existence of two phase transitions, as occurs with pure NaNbO3 ceramics. Although the disorder on the Na/K site does not change either the room temperature phase of K0.2Na0.8NbO3 or the sequence of phase transitions compared with NaNbO3, it changes the temperature of the lowest phase transition and strongly modifies the temperature of the antiferroelectric --> new phase II phase transition. Additionally, the linewidth analysis shows that the orientational mechanism is the dominant contribution to linewidth, although the anharmonic contribution is increased, when compared with NaNbO3, owing to the random distribution of potassium in the sodium niobate matrix. Copyright (C) 2004 John Wiley Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystallized boehmite gamma-AlOOH center dot nH(2)O had been synthesized by spray-drying (SD) of a solution of aluminium tri-sec-butoxide peptized by nitric acid. The sub-micronic spherical particles obtained had an average diameter of 500 nm and were built of 100 nm or less platelet-like sub-particles. The average crystallite size calculated from XRD was 1.6 nm following the b axis (i.e. one unit cell) and 3-4 nm perpendicular to b. As a result of the nanometric sizes of crystallites, there was a large surface free for water adsorption and it was found to be n = 1.18 +/- 0.24H(2)O per AlOOH. The SD spheres spontaneously dispersed in water at room temperature and formed stable-over months-suspensions with nanometre-size particles (25-85 nm). Luminescent europium-doped nanocrystallized boehmites AlOOH: Eu (Al0.98Eu0.02OOH center dot nH(2)O) were synthesized the same way by SD and demonstrated the same crystallization properties and morphologies as the undoped powders. It is inferred from the Eu3+ luminescence spectroscopy that partly hydrated europium species are immobilized on the boehmite nanocrystals where they are directly bonded to alpha(OH) groups of the AlOOH surface. The europium coordination is schematically written [Eu3+(OH)(alpha)(H2O)(7-alpha/2)]. The europium-doped boehmite from SD spontaneously dispersed in water: the luminescence spectroscopy proves that most of the Eu3+ ions were detached from the NPs during water dispersion. The AlOOH: Eu nanoparticles were modified by the amine acid asparagine (ASN). The modification aimed to render the NPs compatible for further bio-functionalization. After surface modification, the NPs easily dispersed in water; the luminescence spectra after dispersion prove that the Eu3+ ions were held at the boehmite surface.