138 resultados para higher order field theory
Resumo:
Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman advocated that Pauli's exclusion principle can be completely ignored in intermediate states of perturbation theory. He observed that all virtual processes (of the same order) that violate the Pauli principle cancel out. Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate processes. This ingenious trick is of crucial importance in the Feynman diagram technique. We show, however, an example in which Feynman's prescription fails. This casts doubts on the general validity of Feynman's prescription. [S1050-2947(99)04604-1].
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We include the Roper excitation of the nucleon in a version of heavy-baryon chiral perturbation theory recently developed for energies around the delta resonance. We find significant improvement in the P(11) channel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We use a toy model to illustrate how to build effective theories for singular potentials. We consider a central attractive 1/r(2) potential perturbed by a 1/r(4) correction. The power-counting rule, an important ingredient of effective theory, is established by seeking the minimum set of short-range counterterms that renormalize the scattering amplitude. We show that leading-order counterterms are needed in all partial waves where the potential overcomes the centrifugal barrier, and that the additional counterterms at next-to-leading order are the ones expected on the basis of dimensional analysis. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The superform construction of supersymmetric invariants, which consists of integrating the top component of a closed superform over spacetime, is reviewed. The cohomological methods necessary for the analysis of closed superforms are discussed and some further theoretical developments presented. The method is applied to higher-order corrections in heterotic string theory up to alpha'(3). Some partial results on N = 2, d = 10 and N = 1, d = 11 are also given.
Resumo:
A fundamental action, representing a mass dimension-transmuting operator between Dirac and ELKO spinor fields, is performed on the Dirac Lagrangian, in order to lead it into the ELKO Lagrangian. Such a dynamical transformation can be seen as a natural extension of the Standard Model that incorporates dark matter fields. The action of the mass dimension-transmuting operator on a Dirac spinor field, that de fines and introduces such a mapping, is shown to be a composition of the Dirac operator and the nonunitary transformation that maps Dirac spinor fields into ELKO spinor fields, de fined in J. Math. Phys. 4 8, 123517 (2007). This paper gives allowance for ELKO, as a candidate to describe dark matter, to be incorporated in the Standard Model. It is intended to present for the first time, up to our knowledge, the dynamical character of a mapping between Dirac and ELKO spinor fields, transmuting the mass dimension of spin one-half fermionic fields from 3/2 to 1 and from 1 to 3/2.
Resumo:
We construct static and time-dependent exact soliton solutions with nontrivial Hopf topological charge for a field theory in 3 + 1 dimensions with the target space being the two dimensional sphere S(2). The model considered is a reduction of the so-called extended Skyrme-Faddeev theory by the removal of the quadratic term in derivatives of the fields. The solutions are constructed using an ansatz based on the conformal and target space symmetries. The solutions are said self-dual because they solve first order differential equations which together with some conditions on the coupling constants, imply the second order equations of motion. The solutions belong to a sub-sector of the theory with an infinite number of local conserved currents. The equation for the profile function of the ansatz corresponds to the Bogomolny equation for the sine-Gordon model.
Resumo:
In certain Mott-insulating dimerized antiferromagnets, triplet excitations of the paramagnetic phase display both three-particle and four-particle interactions. When such a magnet undergoes a quantum phase transition into a magnetically ordered state, the three-particle interaction becomes part of the critical theory provided that the lattice ordering wave vector is zero. One microscopic example is the staggered-dimer antiferromagnet on the square lattice, for which deviations from O(3) universality have been reported in numerical studies. Using both symmetry arguments and microscopic calculations, we show that a nontrivial cubic term arises in the relevant order-parameter quantum field theory, and we assess its consequences using a combination of analytical and numerical methods. We also present finite-temperature quantum Monte Carlo data for the staggered-dimer antiferromagnet which complement recently published results. The data can be consistently interpreted in terms of critical exponents identical to that of the standard O(3) universality class, but with anomalously large corrections to scaling. We argue that the cubic interaction of critical triplons, although irrelevant in two spatial dimensions, is responsible for the leading corrections to scaling due to its small scaling dimension.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The time evolution of the matter produced in high energy heavy-ion collisions seems to be well described by relativistic viscous hydrodynamics. In addition to the hydrodynamic degrees of freedom related to energy-momentum conservation, degrees of freedom associated with order parameters of broken continuous symmetries must be considered because they are all coupled to each other. of particular interest is the coupling of degrees of freedom associated with the chiral symmetry of QCD. Quantum and thermal fluctuations of the chiral fields act as noise sources in the classical equations of motion, turning them into stochastic differential equations in the form of Ginzburg-Landau-Langevin (GLL) equations. Analytic solutions of GLL equations are attainable only in very special circumstances and extensive numerical simulations are necessary, usually by discretizing the equations on a spatial lattice. However, a not much appreciated issue in the numerical simulations of GLL equations is that ultraviolet divergences in the form of lattice-spacing dependence plague the solutions. The divergences are related to the well-known Rayleigh-Jeans catastrophe in classical field theory. In the present communication we present a systematic lattice renormalization method to control the catastrophe. We discuss the implementation of the method for a GLL equation derived in the context of a model for the QCD chiral phase transition and consider the nonequilibrium evolution of the chiral condensate during the hydrodynamic flow of the quark-gluon plasma.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Inspired by analytic results obtained for a systematic expansion of the memory kernel in dissipative quantum mechanics, we propose a phenomenological procedure to incorporate non-markovian corrections to the Langevin dynamics of an order parameter in field theory systematically. In this note, we restrict our analysis to the onset of the evolution. As an example, we consider the process of phase conversion in the chiral transition.
Resumo:
By using the reductive perturbation method of Taniuti with the introduction of an infinite sequence of slow time variables tau(1), tau(3), tau(5), ..., we study the propagation of long surface-waves in a shallow inviscid fluid. The Korteweg-de Vries (KdV) equation appears as the lowest order amplitude equation in slow variables. In this context, we show that, if the lowest order wave amplitude zeta(0) satisfies the KdV equation in the time tau(3), it must satisfy the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1), With n = 2, 3, 4,.... AS a consequence of this fact, we show with an explicit example that the secularities of the evolution equations for the higher-order terms (zeta(1), zeta(2),...) of the amplitude can be eliminated when zeta(0) is a solitonic solution to the KdV equation. By reversing this argument, we can say that the requirement of a secular-free perturbation theory implies that the amplitude zeta(0) satisfies the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1) This essentially means that the equations of the KdV hierarchy do play a role in perturbation theory. Thereafter, by considering a solitary-wave solution, we show, again with an explicit, example that the elimination of secularities through the use of the higher order KdV hierarchy equations corresponds, in the laboratory coordinates, to a renormalization of the solitary-wave velocity. Then, we conclude that this procedure of eliminating secularities is closely related to the renormalization technique developed by Kodama and Taniuti.
Resumo:
The polymeric precursor method was successfully used to synthesize CoxZn7-xSbO12 (x = 0-7) powders. Pigments were evaluated using colorimetry, X-ray diffraction, UV-vis and infrared spectroscopy. The optical band gap values vary with the Co2+ substitution. These results suggest that the concomitant presence of Co and Zn in the spinel lattice leads to the rupture of the Vegard law, as well as other properties of the studied system, such as unit cell volume. The Co-richer samples display a higher absorbance than the Co-lean samples. The high absorption of the Co7Sb2O12 sample at most of the visible region makes this compound a candidate for a black pigment. It was shown that color depends on the site where the chromophore ion is located, in agreement with the ligand field theory. (c) 2006 Elsevier Ltd. All rights reserved.