279 resultados para glycerol oleate
Resumo:
OBJETIVO: Investigar a ação histolítica da solução composta de fenol, glicerina e ácido acético para os casos de metástases hepáticas não ressecáveis. MÉTODOS: Foram utilizadas 32 cobaias, distribuídas, por sorteio, em quatro grupos: experimental (24 horas e quatro semanas) e controle (24 horas e quatro semanas); todos os animais foram submetidos a laparotomia mediana e realizada a injeção da solução E (grupo experimental) ou solução fisiológica (grupo controle). Foram estudadas as alterações bioquímicas e anatomopatológicas (fígado) com 24 horas e quatro semanas de evolução. RESULTADOS: Verificou-se que a solução E produz necrose delimitada à área infiltrada apos 24 horas e que ao final de quatro semanas ocorreu regeneração do tecido hepático com formação de discreta área de fibrose. Não foram observadas quaisquer alterações bioquímicas tanto no grupo experimental como controle. CONCLUSÃO: Frente aos resultados obtidos, é válido considerar-se a possibilidade do emprego da solução proposta, nos casos de metástases hepáticas não ressecáveis.
Resumo:
OBJETIVO: Investigar a ação hìstolítica de uma solução composta de fenol, glicerina e ácido acético na ascite neoplásica em cobaias. MÉTODOS: Foram utilizadas 32 cobaias, distribuídas por sorteio, em grupos experimentais e controles e estudados os efeitos da injeção peritonial da solução teste. Nos grupos controles empregou-se solução fisiológica. Foram estudadas alterações bioquímicas, anatomopatológicas (coração, pulmões, rins, baço e serosa peritonial), com 24 horas e 4 semanas de evolução. RESULTADOS: Verificou-se que a solução E quando instilada na cavidade peritonial não provocou nenhuma alteração clinica, histologica ou laboratorial nestes animais, quando comparados com o grupo controle. CONCLUSÃO: Frente aos resultados obtidos, consideramos interessante estudar os efeitos da solução proposta em casos de ascite neoplásica experimental em animais, com posterior estudo em seres humanos.
Resumo:
O presente trabalho foi desenvolvido com o objetivo de avaliar o efeito da adição de lecitina aos mostos de cana, laranja e uva sobre o rendimento e composição das aguardentes. O delineamento empregado para a análise estatística foi o de blocos casualizados, no esquema fatorial 2x3, empregando-se dois fatores - lecitina e mosto - em dois níveis para lecitina: ausência (índice um) e presença (índice dois); e em três níveis para mosto: cana, laranja e uva. A metodologia empregada foi a recomendada pelo setor aguardenteiro e as análises químicas dos componentes secundários foram realizadas por cromatografia gasosa e espectrofotometria. Pelos resultados, conclui-se que quando se adiciona lecitina aos mostos de cana, laranja e uva, o vinho obtido após a fermentação tem maior concentração de glicerol, e as aguardentes produzidas pela destilação têm maior concentração de isobutanol. Já nos mostos em que foi adicionada a lecitina, o rendimento alcoólico total das aguardentes foi menor do que nos mostos que não a recebeu. Os componentes secundários acetaldeído, acetato de etila e acidez total aumentaram com o aumento da acidez nos vinhos. Por outro lado, o propanol, isobutanol e álcool isoamílico aumentaram com os aumentos dos pH e das concentrações nos mostos, dos aminoácidos treonina, valina e leucina. A concentração do furfural foi maior nas aguardentes provenientes dos mostos de cana e laranja.
Resumo:
Kinetic evidence for the role of divalent metal ions in the phosphotransferase activity of polidocanol-solubilized alkaline phosphatase from osseous plate is reported. Ethylenediamine tetreacetate, 1,10-phenanthrolin, and Chelex-100 were used to prepare metal-depleted alkaline phosphatase. Except for Chelex-100, either irreversible inactivation of the enzyme or incomplete removal of metal ions occurred. After Chelex-100 treatment, full hydrolase activity of alkaline phosphatase was recovered upon addition of metal ions. on the other hand, only 20% of transferase activity was restored with 0.1 mu M ZnCl2, in the presence of 1.0 M diethanolamine as phosphate acceptor. In the presence of 0.1 mM MgCl2, the recovery of transferase activity increased to 63%. Independently of the phosphate acceptor used, the transferase activity of the metal-depleted alkaline phosphatase was fully restored by 8 mu M ZnCl2 plus 5 mM MgCl2. In the presence of diethanolamine as phosphate acceptor, manganese, cobalt, and calcium ions did nor stimulate the transferase activity. However, manganese and cobalt-enzyme catalyzed the transfer of phosphate to glycerol and glucose. (C) 1997 Elsevier B.V.
Resumo:
Lipolytic activity of fish (Hoplias malabaricus), toad (Bufo paracnemis), and snake (Philodryas patagoniensis) adipose tissue was investigated in vivo and in vitro. Catecholamines or glucagon did not affect the release of free fatty acids (FFA) by incubated fish and toad adipose tissue. Catecholamines also failed to activate snake adipose tissue lipolysis, which even decreased in the presence of epinephrine. However, glucagon stimulated both the lipolytic activity of reptilian tissue in vitro and the mobilization of FFA to plasma when administered to snakes in vivo. The release of FFA from incubated fish, amphibian, and reptilian adipose tissue increased markedly in the presence of cAMP or xanthine derivatives, inhibitors of phosphodiesterase. Forskolin or fluoride, activators of specific components of the adenylate cyclase system, strongly stimulated toad adipose tissue lipolysis. The data suggest that adipocyte triacylglycerol lipase of ectotherm vertebrates is activated by a cAMP-mediated phosphorylation and that the organization of the membrane-bound adenylate cyclase system is similar to that of mammals.
Resumo:
The effects of chemical pretreatment and air drying temperature on drying kinetics, shrinkage, density and rehydration ratio of grapes were determined at various moisture contents. It was observed that the chemical pretreatment employed - a solution of 2% CaCO3 with 0 to 3% ethyl oleate - increased considerably the drying rate. It was established that the shrinkage increased with drying temperature between 40 to 80 degrees C and decreased with increasing concentration of ethyl oleate in the chemical pretreatment solution.
Resumo:
The dough-leavening power of baker's yeast, Saccharomyces cerevisiae, is strongly influenced by conditions under which the pressed yeast is maintained prior to bread dough preparation. In this study, the influence of the yeast cell's pre-treatment with organic acids (malic, succinic, and citric acids) was investigated at a wide range of pH values when the pressed yeast samples were exposed to 30 degrees C. Increased fermentative activity was observed immediately after pre-treatment of the cells with organic acids. When the pH of the pressed yeast containing added citric acid was raised from 3.5 to 7.5, increases in both fermentative and maltase activities were obtained. Improvements in viability and levels of total protein were also observed during storage in the presence of citric acid, notably at pH 7.5. Glycerol-3-phosphate dehydrogenase activity and levels of internal glycerol also increased in the presence of citrate. on the other hand, pressed yeast samples containing succinic acid at pH 7.5 showed decreased viability during storage despite the maintenance of high levels of fermentative activity, similar to pressed yeast containing malic acid at pH 4.5 and 7.5. Decreases in intracellular levels of trehalose were observed during storage in all cases. Overall, the results of this study revealed the potential benefits of adding organic acids to pressed yeast preparations for baking purposes.
Resumo:
In potentiometric-flow systems, linear-potential responses for logarithmic concentrations can be attained for first-(or pseudo-first-) order reactions in which the monitored chemical species react with the analyte during a fixed time interval. To demonstrate this property, the determination of glycerol based on its oxidation by periodate and potentiometric monitoring of the remaining periodate was selected. Influence of reagent concentration and timing on the linearity of the analytical curve were investigated. A mathematical treatment was derived, and potentialities/limitations of the approach were outlined. The system was applied to analysis of soap and lixivia samples. The analytical curve within 200 and 2000 mg L-1 (r = 0.99975; n = 5) was described as E = 8.166 + 0.0478 (glycerol). The sample throughput was 100 h(-1), and a measurement repeatability within 0.5 mV was always observed. By applying a t-test, there was no statistical difference between the results obtained by the proposed procedure and by iodimetric titration at the 95% confidence level. (C) 2000 John Wiley & Sons, Inc. Lab Robotics and Automation 12:41-45, 2000.
Resumo:
2-Deoxyribonolactones and four tetrahydroisoquinoline alkaloids were isolated from the acetone extract of the leaves of Aristolochia arcuata Mast., together with pinitol, sequoyitol, glycerol, fructose, sucrose, eupomatenoid-7, salsolinol, and 6,7-dihydroxyl,1-dimethyl-1,2,3,4-tetrahydroisoquinoline. Their structures were determined on the basis of spectroscopic methods, mainly using H-1, C-13, N-15, and P-31 NMR. (C) 2003 Elsevier B.V. Ltd. All rights reserved.
Resumo:
A clavulanic acid production process with immobilized Streptomyces clavuligerus cells was investigated. Cells were immobilized in diatomaceous earth, calcium alginate gel as well as in the form of natural pellets and cultivated in shake flasks in a medium containing glycerol and soytone as the carbon and nitrogen sources, respectively. In all experiments growth occurred in the first 48 h and glycerol consumption after 72 h, while clavulanic acid production was observed between 48 and 60h, with gradual degradation after this period. The natural pellets presented higher product concentration as compared with the cells immobilized in supports. However, calcium alginate was found to be the best support in relation to cell retention capacity.
Resumo:
In the present study, polymorphonuclear neutrophils (PMN) were enumerated to evaluate acute uterine inflammation after artificial insemination in the bitch. It was concluded that the canine seminal plasma possessed an immunomodulating action. However, the most commonly used extender for freezing canine semen (Tris glucose with egg yolk and glycerol) was a potential inducer of uterine inflammation. (c) 2006 Published by Elsevier B.V.
Resumo:
Actiaomycin-D (actD) binds to natural DNA at two different classes of binding sites, weak and strong. The affinity for these sites is highly dependent on DNA se(sequence and solution conditions, and the interaction appears to be purely entropic driven Although the entropic character of this reaction has been attributed to the release of water molecules upon drug to DNA complex formation, the mechanism by which hydration regulates actD binding and discrimination between different classes of binding sites on natural DNA is still unknown. In this work, we investigate the role of hydration on this reaction using the osmotic stress method. We skew that the decrease of solution water activity, due to the addition of sucrose, glycerol ethylene glycol, and betaine, favors drug binding to the strong binding sites on DNA by increasing both the apparent binding affinity Delta G, and the number of DNA base pairs apparently occupied by the bound drug n(bp/actD). These binding parameters vary linearly with the logarithm of the molar fraction of water in solution log(X-w), which indicates the contribution of water binding to the energetic of the reaction. It is demonstrated that the hydration change measured upon binding increases proportionally to the apparent size of the binding site n(bp/uctD). This indicates that n(bp/actD) measured from the Scatchard plod is a measure of the size of the DNA molecule changing conformation due to ligand binding. We also find that the contribution of DNA deformation, gauged by n(bp/act) to the total free energy of binding Delta G, is given by Delta G = Delta G(local) + n(bp/actD) x delta G(DNA), where Delta G(local), = -8020 +/- 51 cal/mol of actD bound and delta G(DNa) = -24.1 +/- 1.7cal/mol of base pair at 25 degrees C. We interpret Delta G(local), as the energetic contribution due to the direct interactions of actD with the actual tetranucleotide binding site, and it n(bp/actB) X delta G(DNA) as that due to change inconformation, induced by binding, of it n(bp/actD) DNA base pairs flanking the local site. This interpretation is supported by the agreement found between the value of delta G(DNA) and the torsional free energy change measured independently. We conclude suggesting an allosteric model for ligand binding to DNA, such that the increase in binding affinity is achieved by increasing the relaxation of the unfavorable free energy of binding storage at the local site through a larger number of DNA base pairs. The new aspect on this model is that the size of the complex is not fixed but determined by solutions conditions, such as water activity, which modulate the energetic barrier to change helix conformation. These results may suggest that long-range allosteric transitions of duplex DNA are involved in the inhibition of RNA synthesis by actD, and more generally, in the regulation of transcription. (C) 2000 John Wiley & Sons, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Since ancient times, the utilization of yeasts by the man has a great impact on the socio-economic development. After the advent of the technology of recombinant DNA, great advances have occurred due to the acquisition of strains of mutant yeasts in the field of applied research, and Saccharomyces cerevisiae has soon been outstanding as an interesting candidate for the expression of heterologous proteins of biotechnological interest. As the time goes by other alternative systems of expression have been shown because they have advantages over Saccharomyces cerevisiae. Among those new systems, Pichia pastoris is outstanding as methylotrophic yeast capable of growing in a culture medium containing methanol as the only source of carbon and energy. The induction of production of glycerol-3-phosphate dehydrogenase (GPD, NAD(+): oxido-redutase EC 1.1. 1.8) by Pichia pastoris was accomplished in the medium containing methanol. One of the most important key parameters in Pichia pastoris expression system is the methanol concentration. Bibliographic reviews on the Pichia pastoris production system have shown that the best culture conditions vary according to the strain used and/or kind of heterologous protein desired to be expressed. Therefore, we have sought to develop a system, involving expression of glycerol-3-phosphate dehydrogenase in the yeast Pichia pastoris, for generating sufficient quantities of the enzyme in order to asses its potential value for use in various food bioanalytical determination. Dehydrogenases have been widely used in the enzymatic assays of diverse composites of industrial interest, being enclosed among them glycerol and a number of important bioanalytical applications.
Resumo:
The glycerophosphate oxidase is a flavoprotein responsible for the catalysis of the oxidation of the glycerophosphate to dihydroxyacetone phosphate, through the reduction of the oxygen to hydrogen peroxide. The glycerophosphate oxidase from baker's yeast was specific for L-alpha-glycerol phosphate. It was estimated by monitoring the consumption of oxygen with an oxygraph. An increase of 32% in consumption of oxygen was obtained when the enzyme was concentrated 16-fold. The assay of enzyme was determined by the peroxidase chromogen method followed at 500 nm. The procedure for the standardization of the activity of the glycerophosphate oxidase from baker's yeast was accomplished, and the pH and temperature stability showed that the enzyme presented a high stability at pH 8.0, and the thermal stability was maintained up to 60 degrees C during I h. Such method allowed quantifying in the range 92-230 mM of glycerol phosphate, an important intermediate metabolite from lipid biosynthesis and glycolytic routes. (C) 2007 Elsevier B.V. All rights reserved.