126 resultados para direct current distribution
Resumo:
Phasor Measurement Units (PMUs) optimized allocation allows control, monitoring and accurate operation of electric power distribution systems, improving reliability and service quality. Good quality and considerable results are obtained for transmission systems using fault location techniques based on voltage measurements. Based on these techniques and performing PMUs optimized allocation it is possible to develop an electric power distribution system fault locator, which provides accurate results. The PMUs allocation problem presents combinatorial features related to devices number that can be allocated, and also probably places for allocation. Tabu search algorithm is the proposed technique to carry out PMUs allocation. This technique applied in a 141 buses real-life distribution urban feeder improved significantly the fault location results. © 2004 IEEE.
Resumo:
Three-phase three-wire power flow algorithms, as any tool for power systems analysis, require reliable impedances and models in order to obtain accurate results. Kron's reduction procedure, which embeds neutral wire influence into phase wires, has shown good results when three-phase three-wire power flow algorithms based on current summation method were used. However, Kron's reduction can harm reliabilities of some algorithms whose iterative processes need loss calculation (power summation method). In this work, three three-phase three-wire power flow algorithms based on power summation method, will be compared with a three-phase four-wire approach based on backward-forward technique and current summation. Two four-wire unbalanced medium-voltage distribution networks will be analyzed and results will be presented and discussed. © 2004 IEEE.
Resumo:
Distribution systems with distributed generation require new analysis methods since networks are not longer passive. Two of the main problems in this new scenario are the network reconfiguration and the loss allocation. This work presents a distribution systems graphic simulator, developed with reconfiguration functions and a special focus on loss allocation, both considering the presence of distributed generation. This simulator uses a fast and robust power flow algorithm based on the current summation backward-forward technique. Reconfiguration problem is solved through a heuristic methodology and the losses allocation function, based on the Zbus method, is presented as an attached result for each obtained configuration. Results are presented and discussed, remarking the easiness of analysis through the graphic simulator as an excellent tool for planning and operation engineers, and very useful for training. © 2004 IEEE.
Resumo:
The problem of power system stability including the effects of a flexible alternating current transmission system (FACTS) is approached. First, the controlled series compensation is considered in the machine against infinite bar system and its effects are taken into account by means of construction of a Lyapunov function (LF). This simple system is helpful in order to understand the form the device affects dynamic and transient performance of the power system. After, the multimachine case is considered and it is shown that the single-machine results apply to multimachine systems. An energy-form Lyapunov function is derived for the power system including the FACTS device and it is used to analyse damping and synchronizing effects due to the FACTS device in single-machine as well as in multimachine power systems. © 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fuel cell as MCFC (molten carbonate fuel cell) operate at high temperatures, and due to this issue, cogeneration processes may be performed, sending heat for own process or other purposes as steam generation in an industry. The use of ethanol for this purpose is one of the best options because this is a renewable and less environmentally offensive fuel, and cheaper than oil-derived hydrocarbons (in the case of Brazil). In the same country, because of technical, environmental and economic advantages, the use of ethanol by steam reforming process have been the most investigated process. The objective of this study is to show a thermodynamic analysis of steam reforming of ethanol, to determine the best thermodynamic conditions where are produced the highest volumes of products, making possible a higher production of energy, that is, a most-efficient use of resources. To attain this objective, mass and energy balances are performed. Equilibrium constants and advance degrees are calculated to get the best thermodynamic conditions to attain higher reforming efficiency and, hence, higher electric efficiency, using the Nernst equation. The advance degree of reforming increases when the operation temperature also increases and when the operation pressure decreases. But at atmospheric pressure (1 atm), the advance degree tends to the stability in temperatures above 700°C, that is, the volume of supplemental production of reforming products is very small for the high use of energy resources necessary. Reactants and products of the steam-reforming of ethanol that weren't used may be used for the reforming. The use of non-used ethanol is also suggested for heating of reactants before reforming. The results show the behavior of MCFC. The current density, at same tension, is higher at 700°C than other studied temperatures as 600 and 650°C. This fact occurs due to smaller use of hydrogen at lower temperatures that varies between 46.8 and 58.9% in temperatures between 600 and 700°C. The higher calculated current density is 280 mA/cm 2. The power density increases when the volume of ethanol to be used also increases due to higher production of hydrogen. The highest produced power at 190 mW/cm 2 is 99.8, 109.8 and 113.7 mW/cm2 for 873, 923 and 973K, respectively. The thermodynamic efficiency has the objective to show the connection among operational conditions and energetic factors, which are some parameters that describes a process of internal steam reforming of ethanol.
Resumo:
This paper proposes a dedicated algorithm for lation of single line-to-ground faults in distribution systems. The proposed algorithm uses voltage and current phasors measured at the substation level, voltage magnitudes measured at some buses of the feeder, a database containing electrical, operational and topological parameters of the distribution networks, and fault simulation. Voltage measurements can be obtained using power quality devices already installed on the feeders or using voltage measurement devices dedicated for fault location. Using the proposed algorithm, likely faulted points that are located on feeder laterals geographically far from the actual faulted point are excluded from the results. Assessment of the algorithm efficiency was carried out using a 238 buses real-life distribution feeder. The results show that the proposed algorithm is robust for performing fast and efficient fault location for sustained single line-to-ground faults requiring less than 5% of the feeder buses to be covered by voltage measurement devices. © 2006 IEEE.
Resumo:
Several studies suggest that, on a large scale, relief conditions influence the Atlantic Forest cover. The aim of this work was to explore these relationships on a local scale, in Caucaia do Alto, on the Ibiúna Plateau. Within an area of about 78 km2, the distribution of forest cover, divided into two successional stages, was associated with relief attribute data (slope, slope orientation and altitude). The mapping of the vegetation was based on the interpretation of stereoscopic pairs of aerial photographs, from April 2000, on a scale of 1:10,000, while the relief attributes were obtained by geoprocessing from digitalized topographic maps on a scale of 1:10,000. Statistical analyses, based on qui-square tests, revealed that there was a more extensive forest cover, irrespective of the successional stage, in steeper areas (>10 degrees) located at higher altitudes (>923 m), but no influence of the slope orientation. There was no sign of direct influence of relief on the forest cover through environmental gradients that might have contributed to the forest regeneration. Likewise, there was no evidence that these results could have been influenced by the distance from roads or urban areas or with respect to permanent preservation areas. Relief seems to influence the forest cover indirectly, since agricultural land use is preferably made in flatter and lower areas. These results suggest a general distribution pattern of the forest remnants, independent of the scale of study, on which relief indirectly has a strong influence, since it determines human occupation.
Resumo:
This paper presents the development and the experimental analysis of a new single-phase hybrid rectifier structure with high power factor (PF) and low harmonic distortion of current (THDI), suitable for application in traction systems of electrical vehicles pulled by electrical motors (trolleybus), which are powered by urban distribution network. This front-end rectifier structure is capable of providing significant improvements in trolleybuses systems and in the urban distribution network costs, and efficiency. The proposed structure is composed by an ordinary single-phase diode rectifier with parallel connection of a switched converter. It is outlined that the switched converter is capable of composing the input line current waveform assuring high power factor (HPF) and low THDI, as well as ordinary front-end converter. However, the power rating of the switched converter is about 34% of the total output power, assuring robustness and reliability. Therefore, the proposed structure was named single-phase HPF hybrid rectifier. A prototype rated at 15kW was developed and analyzed in laboratory. It was found that the input line current harmonic spectrum is in accordance with the harmonic limits imposed by IEC61000-3-4. The principle of operation, the mathematical analysis, the PWM control strategy, and experimental results are also presented in this paper. © 2009 IEEE.
Resumo:
This paper presents the development and experimental analysis of a special input stage converter for a Trolleybus type vehicle allowing its operation in AC (two wires, single-phase) or DC distribution networks. The architecture of proposed input stage converter is composed by five interleaved boost rectifiers operating in discontinuous conduction mode. Furthermore, due to the power lines characteristics, the proposed input power structure can act as AC to DC or as DC to DC converter providing a proper DC output voltage range required to the DC bus. When operation is AC to DC, the converter is capable to provide high power factor with reduced harmonic distortion for the input current, complying with the restrictions imposed by IEC 61000-3-4 standard. Finally, the main experimental results are presented in order to verify the feasibility of the proposed converter, demonstrating the benefits and the possibility for AC feeding system for trolleybus type vehicle. © 2010 IEEE.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The purpose of this work is to present a frequency domain model to demonstrate the operation of an electromagnetic arrangement for controlling the injection of zero-sequence currents in the electrical system. Considering the diversity of sequential distribution of harmonic components of a current, the device proposed can be used in the process of mitigation of zero-sequence components. This device, here called electromagnetic suppressor, consists of a blocker and filter both electromagnetic, whose joint operation can provide paths of high and low impedances that can be conveniently adjusted in order to search for a desired performance. This study presents physical considerations, mathematical modeling and computer simulations that clearly demonstrate the viability of this application as a more viable alternative in the conception of filtering systems. The performance analysis is based on the frequency response of harmonic transmittances. The efficacy of this technique in direct actions to maximize the harmonic mitigation process is demonstrated. ©2010 IEEE.
Resumo:
This paper presents an approach for probabilistic analysis of unbalanced three-phase weakly meshed distribution systems considering uncertainty in load demand. In order to achieve high computational efficiency this approach uses both an efficient method for probabilistic analysis and a radial power flow. The probabilistic approach used is the well-known Two-Point Estimate Method. Meanwhile, the compensation-based radial power flow is used in order to extract benefits from the topological characteristics of the distribution systems. The generation model proposed allows modeling either PQ or PV bus on the connection point between the network and the distributed generator. In addition allows control of the generator operating conditions, such as the field current and the power delivery at terminals. Results on test with IEEE 37 bus system is given to illustrate the operation and effectiveness of the proposed approach. A Monte Carlo Simulations method is used to validate the results. © 2011 IEEE.
Resumo:
This paper presents a distribution feeder simulation using VHDL-AMS, considering the standard IEEE 13 node test feeder admitted as an example. In an electronic spreadsheet all calculations are performed in order to develop the modeling in VHDL-AMS. The simulation results are compared in relation to the results from the well knowing MatLab/Simulink environment, in order to verify the feasibility of the VHDL-AMS modeling for a standard electrical distribution feeder, using the software SystemVision™. This paper aims to present the first major developments for a future Real-Time Digital Simulator applied to Electrical Power Distribution Systems. © 2012 IEEE.
Resumo:
This paper presents an efficient tabu search algorithm (TSA) to solve the problem of feeder reconfiguration of distribution systems. The main characteristics that make the proposed TSA particularly efficient are a) the way in which the neighborhood of the current solution was defined; b) the way in which the objective function value was estimated; and c) the reduction of the neighborhood using heuristic criteria. Four electrical systems, described in detail in the specialized literature, were used to test the proposed TSA. The result demonstrate that it is computationally very fast and finds the best solutions known in the specialized literature. © 2012 IEEE.
Resumo:
In this work, a mathematical model to analyze the impact of the installation and operation of dispersed generation units in power distribution systems is proposed. The main focus is to determine the trade-off between the reliability and operational costs of distribution networks when the operation of isolated areas is allowed. In order to increase the system operator revenue, an optimal power flow makes use of the different energy prices offered by the dispersed generation connected to the grid. Simultaneously, the type and location of the protective devices initially installed on the protection system are reconfigured in order to minimize the interruption and expenditure of adjusting the protection system to conditions imposed by the operation of dispersed units. The interruption cost regards the unsupplied energy to customers in secure systems but affected by the normal tripping of protective devices. Therefore, the tripping of fuses, reclosers, and overcurrent relays aims to protect the system against both temporary and permanent fault types. Additionally, in order to reduce the average duration of the system interruption experienced by customers, the isolated operation of dispersed generation is allowed by installing directional overcurrent relays with synchronized reclose capabilities. A 135-bus real distribution system is used in order to show the advantages of using the mathematical model proposed. © 1969-2012 IEEE.