119 resultados para dielectric
Resumo:
Different measurements were performed in cross-linked polyethylene (XLPE) employed as insulating material in coaxial cables that were field-aged and laboratory-aged under multi-stressing conditions at room temperature. Samples were peeled from the XLPE cable insulation in three different positions: just below the external semiconductor layer (outer layer), in the middle (middle layer) and just above the internal semiconductor layer of the cable (inner layer). The imaginary part of the electric susceptibility showed three peaks that obey the Dissado-Hill model. For laboratory-aged XLPE samples peeled from the inner and from the middle positions the peak at very low frequency region increased while in samples from the outer position a quasi-DC conduction process was observed. In medium frequency range a broadening of the peak was observed for all samples. Viscoelastic properties determined through dynamic mechanical analysis suggested that the aging generates processes that promoted changes of the crystallinity and the cross-linking degrees of the polymer. Fourier transform infrared spectroscopy (FTIR) measurements revealed an increase of oxidation products (esters), evidence of polar residues of the bow-tie tree and the presence of cross-linking by-products (acetophenone). Optical and scanning electronic microscope (SEM) measurements in aged samples revealed the existence of voids and bow-tie trees that were formed during aging in the middle region of the cable.
Resumo:
It is very important for the building of the SAW devices to study dielectric and ferroelectrics properties because every SAW device is based in piezoelectric effect that it is made up to transform an electric sign in the mechanical or acoustic sign and a mechanical or acoustic sign in an electric sign. Thus, the purpose of the present work is to prepare PbZr 0,53Ti0.47O3 (PZT) and PbTiO3 (PT) thin films on the Si (100) substrates across spin-coating using a chemical method based in polymeric precursors. After conventional treatment in the furnace, the films were characterized by impedance spectroscopy and hysteresis loops to know its dielectric and ferroelectric properties.
Resumo:
The ferroelectric and the dielectric behaviors of binary blends formed by an equi-molar Poly(vinylidene fluoride trifluoroethylene) copolymer [P(VDF-TrFE)] and Poly(methyl methacrylate) [PMMA] were investigated, for several PMMA compositions. For 40 wt.% or more PMMA contents, the blends are completely amorphous. Below this value, they crystallize in the usual Cm2m polar structure of P(VDF-TrFE). The ferroelectric switching characteristics and the dielectric response of the blends demonstrate the formation of dynamically stable ferroelectric domains. Moreover, the blended films are highly transparent in the optical region. Therefore, thin films of these binary blends are good candidates as host materials for nonlinear optical applications.
Resumo:
In this work fresh cables were laboratory aged under multi-stressing conditions at room temperature. Foils were peeled from cables, with approximately 150 ?m thickness, from the outer, middle and inner positions of the XLPE cable insulating layer. For samples obtained from the outer cable layer position, an increasing near-permanent electrical conduction process with aging time was observed. At the middle and inner cable layer positions a flat-loss relaxation process was observed becoming a dominating process on the ageing. In addition, PEA results confirmed that degradation in the outer region of the XLPE cables arises from the simultaneous presence of dipoles and injected space charge that distorts the internal electric field on the ageing.
Resumo:
The relationship between the dielectric properties (dielectric constant, ε′, and loss factor, ε; activation energy, E a) and the ratio of epoxy resin (OG) to hardener of the epoxy resin thermosetting polymers was investigated. The amplitude of the ε″ peak decreases with increasing OG content until about 73 wt.% and slightly increases at higher OG content. The temperature of the position of the ε″ peak increases with the increasing of OG content, reaching maximum values for compositions in the range of 67 and 73 wt.%, and then it decreases sharply at higher OG content. The activation energy obtained from dielectric relaxation increased with increasing wt.% OG up to around 70 wt.%. Further increase in concentration of OG up to 83 wt.% reduced E a. The curves of tensile modulus and fracture toughness mechanical properties as a function of OG content presented a similar behavior. ©2006 Sociedade Brasileira de Química.
Resumo:
Complex dielectric permittivity measurements in Pb Nb2 O6 ceramics were performed in a frequency and temperature range of 1 kHz-1 MHz and from 15 to 900 K, respectively. The results revealed two dielectric anomalies showing typical characteristics of relaxor ferroelectric materials at cryogenic temperatures. Comparison with other tetragonal tungsten bronze (TTB) structure-type materials suggests the existence of successive phase transitions, which until now were not reported. The observed low temperature dielectric behaviors seem to be due to intrinsic physical characteristics related to the TTB structure. © 2007 American Institute of Physics.
Resumo:
Sr0.5Ba0.5Bi2Nb2O 9 ceramic was prepared by a conventional solid state reaction method and studied using X-ray powder diffraction and dielectric measurements. At room temperature, an orthorhombic structure was confirmed and their parameters were obtained using the Rietveld method. Dielectric properties were studied in a broad range of temperatures and frequencies. Typical relaxor behaviour was observed with strong dispersion of the complex relative dielectric permittivity. The temperature of the maximum dielectric constant Tm decreases with increasing frequency, and shifts towards higher temperature side. The activation energy Ea≈0·194±0·03 eV and freezing temperature Ta≈371±2 K values were found using the Vogel-Fulcher relationship. Conduction process in the material may be due to the hopping of charge carriers at low temperatures and small polarons and/or singly ionised oxygen vacancies at higher temperatures. © 2010 Maney Publishing.
Resumo:
The dielectric properties of the 0.65[Pb(Mg 1/3Nb 2/3)O 3]-0.35PbTiO 3 ferroelectric ceramic composition were investigated viewing the capability to be used for tunable microwave applications. The dielectric response has been studied for three selected temperatures (300 K, 370 K and 400 K), below the paraelectric- ferroelectric phase transition temperature, as a function of the applied 'bias' electric field. The obtained dielectric tunability was found to be around 60 %, under an electric field of 19 kV/cm, which makes the studied ceramic composition an excellent candidate for application in the electro-electronic industry, as tunable devices. © 2010 IEEE.
Resumo:
Dielectric spectroscopy was used in this study to examine polycrystalline vanadium and tungstendoped BaZr 0.1Ti 0.90O 3 (BZT10:2V and BZT10:2W) ceramics obtained by the mixed oxide method. According to X-ray diffraction analyses, addition of vanadium and tungsten lead to ceramics free of secondary phases. SEM analyses reveal that both dopants result in slower oxygen ion motion and consequently lower grain growth rate. Temperature dependence dielectric study showed normal ferroelectric to paraelectric transition well above the room temperature for the BZT10 and BZT10:2V ceramics. However, BZT10:2W ceramic showed a relaxor-like behavior near phase transition characterized by the empirical parameter γ. Piezoelectric force microscopy images reveals that the piezoelectric coefficient is strongly influenced by type of donor dopant suggesting promising applications for dynamic random access memories and data-storage media. Copyright © 2010 American Scientific Publishers All rights reserved.
Resumo:
For microwave applications, including mobile and satellite communications, ceramic resonators should have a high dielectric constant, low dielectric losses, and high frequency stability. In this sense, TiO2-ZrO 2 ceramics have been investigated as a function of sintering behavior, phase composition, and microstructure. The ceramics were densified reaching a value of about 86% of theoretical density at 1400°C sintering temperature. The ceramics are prepared by mixing raw materials with the following TiO2-ZrO2 weight % ratio: 100 to 0, 90 to 10, and 80 to 20, respectively. The measured dielectric constants are between 79 and 88 values, while the quality factor due to dielectric losses are between 2820 and 5170. These results point out the influence of Ti/Zr ratio on controlling the dielectric properties. © (2010) Trans Tech Publications.
Resumo:
Dielectric ceramics have been widely investigated and used for microwave applications such as resonators and filters. The present study deals with the influence of sintering temperature on microwave dielectric properties of TiO2 ceramics with 10, 20, and 30 wt% ZrO2. Three compositions have been developed through mixing procedures and then tested for each sintering temperature: 1500 and 1400°C. X-ray diffraction and scanning electron microscopy are carried out aiming to explain the ceramic behavior of each sample. The dielectric constants of different ceramics for both temperatures varied from 85.4 to 62.6, while their quality factor due to dielectric losses varied from 3110 to 1630. The Q decrease is attributed to the non uniform grain growth and to the obtained crystalline phases. The best microwave parameters were obtained for the ceramics sintered at 1400°C, which can be applied in microwave circuits as dielectric resonators. © (2010) Trans Tech Publications.
Resumo:
In this work, air dielectric barrier discharge (DBD) operating at the line frequency (60 Hz) or at frequency of 17 kHz was used to improve the wetting properties of polypropylene (PP). The changes in the surface hydrophilicity were investigated by contact angle measurements. The plasma-induced chemical modifications of PP surface were studied by X-ray photoelectron spectroscopy (XPS) and Fourier-transformed infrared spectroscopy (FTIR). The polymer surface morphology and roughness before and after the DBD treatment were analyzed by atomic force microscopy (AFM). To compare the plasma treatment effect at different frequencies the variation of the contact angle is presented as a function of the deposited energy density. The results show that both DBD treatments leaded to formation of water-soluble low molecular weight oxidized material (LMWOM), which agglomerated into small mounts on the surface producing a complex globular structure. However, the 60 Hz DBD process produced higher amount of LMWOM on the PP surface comparing to the 17 kHz plasma treatment with the same energy dose. The hydrophilic LMWOM is weakly bounded to the surface and can be easily removed by polar solvents. After washing the DBD-treated samples in de-ionized water their surface roughness and oxygen content were reduced and the PP partially recovered its original wetting characteristics. This suggested that oxidation also occurred at deeper and more permanent levels of the PP samples. Comparing both DBD processes the 17 kHz treatment was found to be more efficient in introducing oxygen moieties on the surface and also in improving the PP wetting properties. © 2012 Elsevier B.V. All rights reserved.
Resumo:
Composite materials made of epoxy resin and barium titanate (BT) electrospun nanostructured fibers were prepared. BT fibers were synthesized from a sol based on barium acetate, titanium isopropoxide, and poly(vinyl pyrrolidone). The fibers were heat-treated at different temperatures and characterized by X-ray diffraction, scanning electron microscopy (SEM), and Raman spectroscopy. Mats of BT fibers heat-treated at 800 C were embedded in epoxy resin into suitable molds. The composites were characterized by SEM, and dielectric measurements were performed by means of dielectric spectroscopy. The dielectric permittivity and dielectric modulus of epoxy resin/BT-fiber composites were measured for two types of samples: with the electrodes parallel and perpendicular to the BT fiber layers. Interestingly, composite samples with electrodes perpendicular to the fiber layers and a BT content as low as 2 vol % led to dielectric permittivities three times higher than that of pure epoxy resin. © 2013 American Chemical Society.
Resumo:
The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer-ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer-ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (ε r) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer-ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors. © 2013 Elsevier B.V.
Resumo:
This paper reports the influence of Sr- and Ca-substitution on the structural and ferroelectric properties of Pb1-xSrxZr0.40Ti0.60O3 (PSZT) and Pb1-xCaxZr0.40Ti0.60O3 (PCZT) ceramic systems. The dielectric measurements show that these substitutions cause a diffuse behavior in the dielectric permittivity curves for all samples. According to the X-ray absorption near-edge structure (XANES) spectra collected at Ti K- and LIII-edge, when Pb was replaced by Sr or Ca, a decrease in the local distortion around Ti atoms in the TiO6 octahedron could be observed. The O K-edge XANES spectra also revealed that the hybridization between O 2p and Pb 6sp states decreased as the amount of Sr or Ca atoms increased. Based on these results, it was possible to ascertain that the ferroelectric behavior in PSZT and PCZT samples bears a close correlation to the hybridization weakening between O 2p and Pb 6 sp states. © 2013 by American Scientific Publishers.