117 resultados para dentine bonding agents
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Reabilitação Oral - FOAR
Resumo:
O objetivo do presente estudo foi investigar a influência da pressão intrapulpar e da profundidade dentinária sobre o desempenho adesivo de dois agentes de união à dentina, Single Bond (3M ESPE, St. Paul, MN, EUA) e Clearfil SE Bond (Kuraray, Tokyo, Japão), aplicados in vitro e in vivo. Quarenta e oito prémolares superiores hígidos foram selecionados e os pares pertencentes aos mesmos pacientes foram aleatoriamente distribuídos em 4 grupos experimentais de acordo com o sistema adesivo e a pressão intrapulpar, presente ou ausente. Dos dentes pertencentes ao mesmo par, um foi tratado in vivo e o outro in vitro. A ausência ou presença de pressão intra-pulpar foi determinada in vivo pelo uso de anestésicos locais com ou sem vasoconstritor, respectivamente. In vitro, os dentes foram mantidos sob pressão hidrostática de 15 cm de água por 24 horas. Cavidades de classe I foram preparadas e os sistemas adesivos aplicados de acordo com a recomendação dos fabricantes, seguidos da restauração incremental em resina composta. Para os dentes tratados in vitro, os mesmos procedimentos restauradores foram realizados após 6 meses de armazenagem em solução contendo timol 0,1%. Espécimes com área de secção transversal de 1 mm2 foram obtidos e submetidos ao ensaio mecânico de microtração. In vivo, ambos os sistemas adesivos apresentaram desempenho adesivo comparável, enquanto in vitro, o sistema Single Bond foi superior ao sistema Clearfil SE Bond. Esse último não foi influenciado por nenhuma das variáveis estabelecidas no estudo, ou seja, aplicação in vitro ou in vitro, presença de pressão intrapulpar e profundidade em dentina. O sistema Single Bond aplicado sob pressão intrapulpar positiva sofreu variação significante de resistência de união em função da profundidade da dentina, ou seja, em dentina profunda seu desempenho adesivo... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
In the United States, composites accounted for nearly 70% of the 173.2 million composite and amalgam restorations placed in 2006 (Kingman et al., 2012), and it is likely that the use of composite will continue to increase as dentists phase out dental amalgam. This trend is not, however, without consequences. The failure rate of composite restorations is double that of amalgam (Ferracane, 2013). Composite restorations accumulate more biofilm, experience more secondary decay, and require more frequent replacement. In vivo biodegradation of the adhesive bond at the composite-tooth interface is a major contributor to the cascade of events leading to restoration failure. Binding by proteins, particularly gp340, from the salivary pellicle leads to biofilm attachment, which accelerates degradation of the interfacial bond and demineralization of the tooth by recruiting the pioneer bacterium Streptococcus mutans to the surface. Bacterial production of lactic acid lowers the pH of the oral microenvironment, erodes hydroxyapatite in enamel and dentin, and promotes hydrolysis of the adhesive. Secreted esterases further hydrolyze the adhesive polymer, exposing the soft underlying collagenous dentinal matrix and allowing further infiltration by the pathogenic biofilm. Manifold approaches are being pursued to increase the longevity of composite dental restorations based on the major contributing factors responsible for degradation. The key material and biological components and the interactions involved in the destructive processes, including recent advances in understanding the structural and molecular basis of biofilm recruitment, are described in this review. Innovative strategies to mitigate these pathogenic effects and slow deterioration are discussed.
Resumo:
To evaluate the effect of chlorhexidine (CHX) on the wettability of sound and caries affected dentin by a simplified adhesive system. Material and Methods: Flat coronal dentin surfaces were produced on 60 sound molars, 30 of which were artificially decayed. The teeth were divided randomly into 3 groups (n = 10) with smear layer (SL), without SL impregnated with water and without SL impregnated with chlorhexidine. The SL removal was performed by phosphoric acid etching for 15 s. 20 uL of distilled water or 2% chlorhexidine digluconate were applied on the demineralized dentin for 60 s. Then, a drop of Single Bond 2 was deposited on each surface. Contact angles between dentin surface and adhesive was measured by means of a goniometer and data were submitted to ANOVA and Tukey tests (α = 0.05). Results: Higher contact angles were obtained on sound versus caries affected dentin (p <0.05), regardeless of the surface treatment. For both substrates, contact angles statistically higher were obtained for dentin covered with SL (P <0.05). The SL removal resulted in significant reduction of the angles (P <0.05) and no difference was found among angles produced on demineralized dentin impregnated with water or chlorhexidine (p> 0.05). Conclusion: Caries affected dentin wettability was higher than sound dentin and that characteristic was not influenced by chlorhexidine application.
Resumo:
Statement of problem Because zirconia is a glass-free material, alternative surface treatments such as airborne-particle abrasion or silica coating should be used for long-term bonding. However, these surface treatments in combination with different bonding agents and luting cements have not yet been studied. Purpose The purpose of the study was to evaluate the effect of surface treatments on the shear bond strength (SBS) of luting cements to Y-TZP ceramic. Material and methods Zirconia disks (N=240) were airborne-particle abraded with the following particles (n=48): 50 μm Al2O3; 120 μm Al2O3; 30 μm silica-coated Al2O3 (Rocatec Soft); 120 μm Al2O3+110 μm silica-coated Al2O3 (Rocatec Plus); and Rocatec Plus. After silanization of the zirconia surface, composite resin disks were bonded with (n=12) RelyX Luting 2; RelyX ARC; RelyX U100; and Panavia F. The bonded specimens were thermocycled (10 000 cycles) and tested for SBS. Failure mode was determined with a stereomicroscope (×20). The morphology and elemental composition of airborne-particle abraded surfaces were evaluated with scanning electron microscopy (×500) and energy-dispersive x-ray spectroscopy (×50). Results Surface treatments, cements, and their interaction were significant (P<.001). For RelyX ARC, Rocatec Soft and Rocatec Plus provided the highest SBS. In general, surface treatments did not influence the SBS of RelyX U100 and Panavia F. Regardless of the cement, no significant difference was found between 50 μm and 120 μm Al2O3 particles, between Rocatec Soft and Rocatec Plus, or between Rocatec Plus and 120 μm Al2O3 particles+Rocatec Plus. All groups showed adhesive failures. Different particle sizes provided differences in morphological patterns. The elemental composition comprised Al and Al/Si for alumina and silica-abraded zirconia. Conclusions Particle size did not influence the SBS of the groups abraded exclusively with alumina or silica-coated particles. RelyX ARC was more surface-treatment dependent than RelyX U100 or Panavia F.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Recent bonding systems have been advocated as multi-purpose bonding agents. The aim of this study was to determine if some of these bonding systems could be associated to composite resins from different manufacturers. This investigation was conducted to test lhe shear bond strength of three bonding systems: Scotchbond Multi-Purpose (3M Dental Products), Optibond Light Cure (Kerr) and Optibond Dual Cure (Kerr), when each of them was associated to lhe composite resins: Z1 00 (3M Dental Products), Prisma - APH (Dentsply) and Herculite XRV (Kerr). Seventy-two flat dentin bonding sites were prepared to 600 grit on human premolars mounted using acrilic resins. The teeth were assigned at random to 9 groups of 8 samples each. A split die with a 3mm diameter was placed over lhe surface of lhe dentin treated with one of lhe adhesive systems, and lhe selected composite resin was inserted and light cured. The split mold was removed and all samples were termocycled and stored in 37ºC water for 24 hours before testing. Shear bond strength was determined using an lnstron Universal testing machine. Some failures were examined under lhe S.E.M. Data was analysed by one-way analysis of variance, that demonstrated a significant difference (p<0,05) in the mean shear bond strength among Optibond Light Cure (15,446 MPa), Scotchbond Multi-Purpose (13,339 MPa) and Optibond Dual Cure (10,019 MPa). These values did not depend on the composite resin used. The association between bonding system/composite resin was statistycally significant (p<0,05) and the best results were obtained when the composite resins Z100 and Herculite were used with the adhesive system Optibond Light Cure, and when the composite resin APH was used with the adhesive system Scotchbond Multi-Purpose
Resumo:
Pós-graduação em Odontologia Restauradora - ICT
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Aim To evaluate and compare the response of pulps of rats capped with resin-modified glass-ionomer cement (RMGIC) or self-etching adhesive system.Methodology Class I cavities were prepared on the occlusal surface of 54 maxillary first molars of 27 rats. Pulp exposure was performed on the cavity floor. The following resin-based materials were applied as pulp-capping agents: G1, Clearfil Liner Bond 2V (CLB 2V; Kuraray Co., Japan); G2, Vitrebond (VIT; 3M/ESPE, USA). In group 3 (control group), a calcium hydroxide/saline paste (CH; Labsynth, Brazil) was used. The cavities were restored with amalgam. After 7, 30 and 60 days, the animals were sacrificed and the jaws were processed for microscopic evaluation.Results Despite the inflammatory response caused by the experimental and the control materials at 7 days, pulpal healing associated with calcified barrier formation was observed at 60 days following the pulp therapy. Both resin-based materials promoted a large zone of cell-rich fibrodentine matrix deposition on the pulp horn related to the pulp exposure site, which was larger to VIT than to CLB 2V specimens. Tertiary dentine underneath the fibrodentine matrix was deposited by a layer of elongated pulpal cells. The remaining pulpal tissue exhibited normal histological characteristics. In the control group, healing and dentine-bridge formation was observed at 30 days. Pulpal breakdown occurred only when bacterial infection occurred.Conclusion Both experimental pulp-capping agents allowed pulpal healing characterized by cell-rich fibrodentine and tertiary dentine deposition as well as calcified barrier formation.
Resumo:
The cementation procedure of metal-free fixed partial dentures exhibits special characteristics about the porcelains and cementation agents, which turns the correct association between these materials necessary. Our purpose in this literature review was to point the main groups of cements associated to metal-free restoration and discuss about the advantages, disadvantages, and recommendations of each one. Our search was confined to the electronic databases PubMed and SciELO and to books about this matter. There are essentially 3 types of hard cement: conventional, resin, or a hybrid of the two. The metal-free restorations can be fixed with conventional or resin cements. The right choice of luting material is of vital importance to the longevity of dental restorative materials. Conventional cements are advantageous when good compressive straight, good film thickness, and water dissolution resistance are necessary. However, they need an ideal preparation, and they are not acid dissolution resistant. Conventional cements are indicated to porcelains that cannot be acid etched. Resin cements represent the choice to metal-free restoration cementation because they present better physical properties and aesthetic than conventional agents.
Resumo:
The study aimed to quantify the color regression of enamel (E), dentine (D), and combined enamel-dentine (ED) of differently bleached ED specimens over a period of 12 months in vitro. Two ED samples were obtained from the labial surfaces of bovine teeth and prepared to a standardized thickness with the enamel and dentine layer each 1 mm. The ED samples were distributed on four groups (each n=80), in which the different bleaching products were applied on enamel (1, Whitestrips; 2, Illumine 15%; 3, Opalescence Xtra Boost) or dentine surfaces (4, mixture of sodium perborate/distilled water). Eighty ED samples were not bleached (control). Color (L*a*b*) of ED was assessed at baseline, subsequently after bleaching and at 3, 6, and 12 months of storage after bleaching (each 20 samples/group). E and D samples were prepared by removing the dentine or enamel layer of ED samples to allow for separate color analysis. Bleaching resulted in a significant color change (Delta E) of ED specimens. Within the observation period, Delta L but not Delta b declined to baseline. L* values of E and D samples also declined and were not significantly different from control samples after 12 months, while b* values did not decrease to baseline. Generally, no differences between the bleaching agents could be observed. Color change of enamel, dentine, and combined ED of in vitro bleached tooth samples is not stable over time with regard to lightness. However, yellowness did not return to baseline within 1 year.
Resumo:
Objective: In this paper we evaluated the effect of two fluoridated agents and Nd:YAG irradiation separately and in combination on dentine resistance to erosion. Background Data: The morphological changes in dentin induced by laser treatment may reduce the progression of erosive lesions. Due to the possibility of a synergistic effect of laser with fluoride, this study was conducted. Materials and Methods: Eighty bovine dentine samples (4 x 4 mm) were randomly divided into eight groups, according to the following treatments: G1: untreated (control); G2: acidic phosphate fluoride gel (APF 1.23%) for 4 min; G3: fluoride varnish (NaF 2.26%) for 6 h; G4: 0.5 W Nd: YAG laser (250 mu sec pulse, 10 Hz, 35 J/cm(2), 30 sec); G5: 0.75 W Nd: YAG laser (52.5 J/cm(2)); G6: 1.0 W Nd: YAG laser (70 J/cm(2)); G7: APF + 0.75 W Nd: YAG laser; and G8: NaF + 0.75 W Nd: YAG laser. After the treatments, half of each dentine surface was protected with nail varnish. The samples were stored in artificial saliva (30 mL/sample) for 24 h and submitted to four erosive 1-min cycles. Between the erosive attacks, the blocks were maintained in artificial saliva for 59 min. The erosive wear was evaluated by profilometry. Results: The mean wear (+/- SD, mu m) was: G1: 1.20 +/- 0.20; G2: 0.47 +/- 0.06; G3: 0.81 +/- 0.11; G4: 1.47 +/- 0.32; G5: 1.52 +/- 0.24; G6: 1.49 +/- 0.30; G7: 0.49 +/- 0.11; and G8: 1.06 +/- 0.31 (Tukey's test, p < 0.05). Conclusions: Laser irradiation was not able to reduce dentine erosion. However, fluoride application was able to increase the dentine's resistance to erosion, and APF showed better results than fluoride varnish.