174 resultados para de Sitter relativity
Resumo:
Fazemos aqui uma breve descrição da teoria semiclássica da gravitação que tem conseguido antecipar de forma bastante robusta alguns efeitos de gravitação quântica.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Podolsky's higher-order field equations are obtained by generalizing the laws of Podolsky's electrostatics, which follow from Coulomb's generalized law and superposition, to be consistent with special relativity. In addition, it is necessary to take into account the independence of the observed charge of a particle on its speed. It is also shown that the gauge-independent term concerning the Feynman propagator for Podolsky's generalized electrodynamics has a good ultraviolet behaviour at the expense of a negative metric massive ghost which, contrary to what is currently assumed in the literature, is non-tachyonic. A brief discussion on Podolsky's characteristic length is presented as well.
Resumo:
An analytical approximate method for the Dirac equation with confining power law scalar plus vector potentials, applicable to the problem of the relativistic quark confinement, is presented. The method consists in an improved version of a saddle-point variational approach and it is applied to the fundamental state of massless single quarks for some especial cases of physical interest. Our treatment emphasizes aspects such as the quantum-mechanical relativistic Virial theorem, the saddle-point character of the critical point of the expectation value of the total energy, as well as the Klein paradox and the behaviour of the saddle-point variational energies and wave functions.
Resumo:
Applying the principle of analytic extension for generalized functions we derive causal propagators for algebraic non-covariant gauges. The so-generated manifestly causal gluon propagator in the light-cone gauge is used to evaluate two one-loop Feynman integrals which appear in the computation of the three-gluon vertex correction. The result is in agreement with that obtained through the usual prescriptions.
Resumo:
Recently, the Hamilton-Jacobi formulation for first-order constrained systems has been developed. In such formalism the equations of motion are written as total differential equations in many variables. We generalize the Hamilton-Jacobi formulation for singular systems with second-order Lagrangians and apply this new formulation to Podolsky electrodynamics, comparing with the results obtained through Dirac's method.
Resumo:
We provide physical interpretation for the four parameters of the stationary Lewis metric restricted to the Weyl class. Matching this spacetime to a completely anisotropic, rigidly rotating, fluid cylinder, we obtain from the junction conditions that one of these parameters is proportional to the vorticity of the source. From the Newtonian approximation a second parameter is found to be proportional to the energy per unit of length. The remaining two parameters may be associated to a gravitational analog of the Aharanov-Bohm effect. We prove, using the Cartan scalars, that the Weyl class metric and static Levi-Civita metric are locally equivalent, i.e., indistinguishable in terms of its curvature.
Resumo:
We revisit the long standing problem of analyzing an inertial electric charge from the point of view of uniformly accelerated observers in the context of semi-classical gravity. We Choose a suitable set of accelerated observers with respect to which there is no photon emission coming from the inertial charge. We discuss this result against previous claims.
Resumo:
Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N = 2, d = 5 Yang-Mills - SYM, N = 2, d = 5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N = 2, d = 5, turns out to be the direct product of supergravity and a general gauge group g: G = g circle times <(SU(2, 2/1))over bar>.
Resumo:
This paper deals with two aspects of relativistic cosmologies with closed spatial sections. These spacetimes are based on the theory of general relativity, and admit a foliation into space sections S(t), which are spacelike hypersurfaces satisfying the postulate of the closure of space: each S(t) is a three-dimensional closed Riemannian manifold. The topics discussed are: (i) a comparison, previously obtained, between Thurston geometries and Bianchi-Kantowski-Sachs metrics for such three-manifolds is here clarified and developed; and (ii) the implications of global inhomogeneity for locally homogeneous three-spaces of constant curvature are analyzed from an observational viewpoint.
Resumo:
It is shown that the local isomorphism between the conformal group of Minkowski spacetime and the group SO(4,2) makes sense only if one eliminates from SO(4,2) one of the Sitter boosts contained in it. © 1992.
Resumo:
The great simplicity attained by the Weyl-van der Waerden spinor technique in the evaluation of helicity invariant amplitudes is shown to apply in the cumbersome calculations within the framework of linearized gravitation. Once the graviton couplings to spin-0, 1/2, 1, and 3/2 particles are given, we exhibit the reach of this method by evaluating, as an example, the helicity amplitudes for the process electron + positron → photon + graviton in a very straightforward way. © 1994 Plenum Publishing Corporation.
Resumo:
In the context of a gauge theory for the translation group, we have obtained, for a spinless particle, a gravitational analogue of the Lorentz force. Then, we have shown that this force equation can be rewritten in terms of magnitudes related to either the teleparallel or the Riemannian structures induced in spacetime by the presence of the gravitational field. In the first case, it gives a force equation, with torsion playing the role of force. In the second, it gives the usual geodesic equation of general relativity. The main conclusion is that scalar matter is able to feel any one of the above spacetime geometries, the teleparallel and the metric ones. Furthermore, both descriptions are found to be completely equivalent in the sense that they give the same physical trajectory for a spinless particle in a gravitational field.