103 resultados para curing of polymers


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to determine the influence of three light-curing units, storage times and colors of the dental composite resin on the fluorescence. The specimens (diameter 10.0 +/- 0.1 mm, thickness 1.0 +/- 0.1 mm) were made using a stainless steel mold. The mold was filled with the microhybrid composite resin and a polyethylene film covered each side of the mold. After this, a glass slide was placed on the top of the mold. To standardize the top surface of the specimens a circular weight (1 kg) with an orifice to pass the light tip of the LCU was placed on the top surface and photo-activated during 40 s. Five specimens were made for each group. The groups were divided into 9 groups following the LCUs (one QTH and two LEDs), storage times (immediately after curing, 24 hours, 7 and 30 days) and colors (shades: A(2)E, A(2)D, and TC) of the composite resin. After photo-activation, the specimens were storage in artificial saliva during the storage times proposed to each group at 37 C and 100% humidity. The analysis of variance (ANOVA) and Tukey's post-hoc tests showed no significant difference between storage times (immediately, 24 hours and 30 days) (P > 0.05). The means of fluorescence had difference significant to color and light-curing unit used to all period of storage (P < 0.05). The colors had difference significant between them (shades: A2D < A2E < TC) (P < 0.05). The Ultraled (LED) and Ultralux (QTH) when used the TC shade showed higher than Radii (LED), however to A2E shade and A2D shade any difference were found (P > 0.05).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Terpolymers of N-isopropylacrylamide, dodecyl methacrylate (DOMA) and poly(ethylene glycol) (PEG) methacrylate, were synthesized by random copolymerization, and the composition was controlled to achieve systems having different thermosensitivities. H-1 NMR spectra and gel permeation chromatography (GPC) were employed to characterize the different samples obtained. The solution properties were studied by employing spectrophotometry, fluorescence, and dynamic light scattering techniques. The chemical compositions in the final terpolymers are close to those in the feed. The polymers exhibited cloud point temperatures (T-es) varying from 17 to 52 degrees C. Micropolarity studies using I-1/I-3 ratio of the vibronic bands of pyrene show the formation of amphiphilic aggregates capable of incorporating hydrophobic drugs as the polymer concentration is increased. The critical aggregation concentration (CAC) increases from 3.6 x 10(-3) to 1 x 10(-2) g/l with the PEG content varying from 5 to 35 mol%. Anisotropy measurements confirm the results obtained by pyrene fluorescence and show that the aggregates resulting from intermolecular interactions present different organizations. The hydrodynamic diameters (Dh) of the aggregates determined by dynamic light scattering (DLS) vary from 40 to 150 nm depending on the terpolymer composition. The T-cs and Dh values decreased with the ionic strength, and this behavior was attributed to the dehydration of the polymeric micelles. The capacity of solubilization of the aggregates was evaluated by employing pyrene, and the obtained results confirm the ability to incorporate hydrophobic molecules. (c) 2005 Elsevier B.V All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: This study evaluated the efficacy of the union between two new self-etching self-adhesive resin cements and enamel using the microtensile bond strength test.Materials and Methods: Buccal enamel of 80 bovine teeth was submitted to finishing and polishing with metallographic paper to a refinement of #600, in order to obtain a 5-mm(2) flat area. Blocks (2 x 4 x 4 mm) of laboratory composite resin were cemented to enamel according to different protocols: (1) untreated enamel + RelyX Unicem cement (RX group); (2) untreated enamel + Bifix SE cement (BF group); (3) enamel acid etching and application of resin adhesive Single Bond + RelyX Unicem (RXA group); (4) enamel acid etching and application of resin adhesive Solobond M + Bifix SE (BFA group). After 7 days of storage in distillated water at 37 degrees C, the blocks were sectioned for obtaining microbar specimens with an adhesive area of 1 mm(2) (n = 120). Specimens were submitted to the microtensile bond strength test at a crosshead speed of 0.5 mm/min. The results (in MPa) were analyzed statistically by ANOVA and Tu key's test.Results: Enamel pre-treatment with phosphoric acid and resin adhesive (27.9 and 30.3 for RXA and BFA groups) significantly improved (p <= 0.05) the adhesion of both cements to enamel compared to the union achieved with as-polished enamel (9.9 and 6.0 for RX and BF).Conclusion: Enamel pre-treatment with acid etching and the application of resin adhesive significantly improved the bond efficacy of both luting agents compared to the union achieved with as-polished enamel.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate the effect of cement shade, light-curing unit, and water storage on tensile bond strength (a) of a feldspathic ceramic resin bonded to dentin.Materials and Methods: The dentin surface of 40 molars was exposed and etched with 37% phosphoric acid, then an adhesive system was applied. Forty blocks of feldspathic ceramic (Vita VM7) were produced. The ceramic surface was etched with 10% hydrofluoric acid for 60 s, followed by the application of a silane agent and a dual-curing resin cement (Variolink II). Ceramic blocks were cemented to the treated dentin using either A3 or transparent (Tr) shade cement that was activated using either halogen or LED light for 40 s. All blocks were stored in 37 degrees C distilled water for 24 h before cutting to obtain non-trimmed bar-shaped specimens (adhesive area = 1 mm(2) +/- 0.1) for the microtensile bond strength test. The specimens were randomly grouped according to the storage time: no storage or stored for 150 days in 37 degrees C distilled water. Eight experimental groups were obtained (n = 30). The specimens were submitted to the tensile bond strength test using a universal testing machine at a crosshead speed of 1 mm/min. The data were statistically analyzed using ANOVA and Tukey's post-hoc tests (alpha = 0.05).Results: The mean bond strength values were significantly lower for the corresponding water stored groups, except for the specimens using A3 resin cement activated by halogen light. There was no significance difference in mean bond strength values among all groups after water storage.Conclusion: Water storage had a detrimental effect under most experimental conditions. For both cement shades investigated (Tr and A3) under the same storage condition, the light-curing units (QTH and LED) did not affect the mean microtensile bond strengths of resin-cemented ceramic to dentin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: This study evaluated the surface hardness of a resin cement (RelyX ARC) photoactivated through indirect composite resin (Cristobal) disks of different thicknesses using either a light- emitting diode (LED) or quartz tungsten halogen (QTH) light source. Material and Methods: Eighteen resin cement specimens were prepared and divided into 6 groups according to the type of curing unit and the thickness of resin disks interposed between the cement surface and light source. Three indentations (50 g for 15 s) were performed on the top and bottom surface of each specimen and a mean Vickers hardness number (VHN) was calculated for each specimen. The data were analyzed using two-way ANOVA and Tukey-Kramer test was used for post-hoc pairwise comparisons. Results: Increased indirect resin disk thickness resulted in decreased mean VHN values. Mean VHN values for the top surfaces of the resin cement specimens ranged from 23.2 to 46.1 (QTH) and 32.3 to 41.7 (LED). The LED curing light source produced higher hardness values compared to the QTH light source for 2- and 3-mm-thick indirect resin disks. The differences were clinically, but not statistically significant. Increased indirect resin disk thickness also resulted in decreased mean VHN values for the bottom surfaces of the resin cement: 5.8 to 19.1 (QTH) and 7.5 to 32.0 (LED). For the bottom surfaces, a statistically significant interaction was also found between the type of curing light source and the indirect resin disk thickness. Conclusions: Mean surface hardness values of resin cement specimens decreased with the increase of indirect resin disk thickness. The LED curing light source generally produced higher surface hardness values.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To evaluate the cohesive strength between composite and different light-curing characterizing materials (LCCM), which were prepared using the intrinsic technique.Materials and Methods: One hundred composite specimens were made by using a prefabricated Teflon device, and a layer of LCCM was applied at the interface. The specimens were divided into 5 groups (n = 20): group 1 (control), no LCCM was used; group 2: application of White Kolor Plus Pigment (Kerr) LCCM; group 3: White Tetric Color Pigment (Ivoclar/Vivadent) LCCM; group 4: Brown Kolor Plus Pigment (Kerr) LCCM; group 5: Black Tetric Color Pigment (Ivoclar/Vivadent) LCCM. All materials were used according to the manufacturers' instructions. Specimens were submitted to a tensile test in a universal testing machine (EMIC DL-200MF) to evaluate the cohesive strength at the composite interface. Data were subjected to one-way ANOVA and Tukey's test (alpha = 5%).Results: ANOVA showed a p-value = 0.0001, indicating that there were significant differences among the groups. The mean values in MPa (+/- standard deviation) obtained for the groups were: G1: 28.5 (+/-2.74)a; G2: 23.5 (+/-2.47)b; G3: 20.3 (+/-2.49)b; G4: 10.5 (+/-2.40)c; G5: 9.66 (+/-3.06)c. The groups with the same letters presented no significant differences. The control group presented statistically significantly higher cohesive strengths when compared to the other groups. The groups in which Brown Kolor Plus Pigment and Black Tetric Color Pigment LCCM were used showed significantly lower cohesive strengths when compared to the groups in which White Kolor Plus Pigment and White Tetric Color Pigment LCMM were used.Conclusion: The use of LCCM produced with the intrinsic technique reduced the cohesive strength of composite.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Meglumine, (2R,3R,4R,5S)-6-methylaminohexane-1,2,3,4,5-pentol, is a carbohydrate derived from sorbitol in which the hydroxyl group in position one is replaced by a methylamine group. It forms binary adducts with substances having carboxyl groups, which have in common the presence of hydrogen bonding as the main force in the stabilization of these species. During melting, adducts of meglumine with flunixin (2-[[2-methyl-3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid) polymerize or self-assemble in amorphous supramolecular structures with molecular weights around 2.0 x 10(5) kDa. DSC curves, in a first heating, show isomorphic transitions where the last one at 137 A degrees C for the flunixin-meglumine adduct originated the supramolecular amorphous polymers with glass transition around 49.5 A degrees C. The kinetic parameters for the thermal decomposition step of the polymers were determined by the Capela-Ribeiro non-linear isoconversional method. From data for the TG curves in nitrogen atmosphere and heating rates of 5, 10, 15, and 20 A degrees C min(-1), the E (alpha) and B (alpha) terms could be determined and, consequently, the pre-exponential factor, A(alpha), as well as the kinetic model, g(alpha).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the Knoop hardness of one resin cement (dual-cure mode or light-cure mode) when illuminated directly or through restorative materials-ceramic (HeraCeram) or composite (Artglass)-by two light curing units. Light curing was carried out using a conventional quartz tungsten halogen (QTH) light source (XL2500) for 40 s, and a light emitting diodes (LED) light source (Ultrablue Is) for 40 s. Bovine incisors had their buccal faces flattened and hybridised. on these surfaces, a mould was seated and filled with cement. A disc of the veneering material (1.5 mm thickness) was positioned over this set for light curing. After storage (24 h/37 degrees C), samples (n = 10) were sectioned for hardness (KHN) measurements. Data were submitted to ANOVA and to Tukey's test (alpha = 0.05). In general, light curing with LED resulted in higher hardness values than QTH. Distinct cement behaviour was observed with different veneering material in association with different light curing units (LCUs). (C) 2006 Elsevier Ltd. All rights reserved.