155 resultados para crop coefficient
Resumo:
Three types of raw materials including commercial waste from saltwater (SW), freshwater fish (FW) and tilapia fillet residue (FR) were used to produce fish silage by either acid digestion (2% formic acid and 2% sulfuric acid) or anaerobic fermentation (5% of Lactobacillus plantarum and 15% sugar cane molasses). Six test diets were used in digestibility trials prepared with 70% reference diet and 30% of each experimental silage. These diets were fed to juvenile pacu Piaractus mesopotamicus (146 g average weight) in triplicate. Fish were kept in 500-L tanks and feces collected by manual extrusion. It was observed for both processes that SW waste always had the highest moisture content and lowest fat and ash. Highest crude protein levels were found in silages from commercial fish waste (SW and FW) made from whole fish unfit for human consumption. However, apparent digestibility coefficients did not vary among diets (P > 0.05). Although values did not differ statistically, fermented silage consistently displayed higher digestibility coefficients compared to acid silage. The silages exhibited relatively high protein digestibility (72.5-80.0%), thus suggesting the feasibility of using fish industry by-products in aquaculture feeds.
Resumo:
Brazilian Myrtaceae comprises several genera of trees and shrubs used for ornamental and fruit production. In addition to the well known Guava, Pitanga and Jaboticaba, other species could be used for fruitculture, due the value and quality of their fruits and adaptation to some climate conditions mainly the subtropical one. Nine species of Eugenia were evaluated at Jaboticabal, located at 48° W and 21° S in São Paulo state in a germplasm bank. The average rain by year is 1431 mm and the temperature 22,2° C at an altitude of 575 m. The species are Eugenia klozschiana Berg. (Pero-do-campo), E. stipitata Mc Vaugh (Araça-boi), E. tomentosa Camb. (Cabeludinha), E. dysentherica DC. (Cagaita), E. brasiliensis Berg. (Grumixama), E.pitanga (Pitanga-anã), E. luchsnathiana Berg. (Pitomba), E. uvalha Camb. (Uvaia) and E. involucrata DC. (Cereja-do-rio-grande). The evaluations comprised tree development, fruit quality and leaf and flower morphological studies. The main results are: the trees of Pera-do-campo and Pitanga-anã are small shrubs of 1 to 2 m height, Araça-boi and Cabeludinha are small trees, 3 to 5 m high, and the other species are tall trees, with 5 to 10 m height. The species adapted well to the subtropical conditions, except for Araça-boi, which is native to the Amazonian region and exhibited a severe fungus disease infection. In relation to fruit quality, all the species had edible fruit, some were sweet and juicy, Cabeludinha, Grumixama, Pitomba, Cereja-do-rio grande and Pitanga-anã, while others had high acidity (Araça-boi, Pera-do-campo, Cagaita and Uvaia and were more suitable for processing. Simple, single leaves were characteristic of all species, but with different sizes and shapes., With the addition of color, smell and other characteristics, leaf size and shape were useful for comparative classification. Flower components and structure are described also.
Resumo:
This papers presents results on the variation of the PMD coefficient of optical links under influence of mechanical tests, such as tensile strength, bending and compression, and also during the application of a thermal cycle. Results revealed that the link coefficient is more influenced by the application of a tension load and also suffers significant variation under strong temperature changes. Copyrigth © SBMO.
Resumo:
The sugar cane crop according to several authors can generate, besides the industrialized stalks, an amount of crop residues from the order of 15 to 30% in weight of the aerial part of the plants, depending on the field conditions. The sugar cane area in Brazil is around 5.5×106 hectares, with an amount of 400.106 tons of stalks, with stalks yield of 72 tons.ha-1 (Unica, 2005). This study took place in a sugar cane plot (Latitude 22°46'S, Longitude 47°23'W and 600m of altitude) with 3% of slope, located in São Paulo State. The sugar cane variety was SP 80-1816, in its forth cut, 11 months old and with a planted row spacing of 1.40m. By other side, several sugar mills are bringing the crop residue to their patio to produce energy with the bagasse. One way for that is the baling operation to bring the crop residue at the sugar mill. Some fundamental variables were obtained to define the best set of machines to work with in sugar cane crop residue removal in the baling system among the studied ones, some of the variables were: Soil Index (T1 = 0.83%, T2 = 0.46%, T3 = 0.65%, T4 = 0.57%); Energy Efficiency (T1 = 82.48%, T2 = 83.88%, T3 = 82.83% and T4 = 82.97%) of the system and Effective Cost for Equivalent Energy in US$.EBP-1 (T1 = 11.10, T2= 10.46, T3 = 11.47 and T4 = 10.57) of the baled trash delivered at the sugar mill.
Resumo:
Twenty adult partridges Rhynchotus rufescens were used to study the morphology of oesophagus and crop. Materials to the morphologic study were collected and lengths of the oesophagus and of the crop were measured. For histological study, fragments of the oesophagus and of the crop were stained routinely with Masson's trichrome stain. Total oesophagus was larger in females. In the entrance of the thorax, its ventral wall is enlarged broadly, forming the crop, which is larger in males. Oesophagus mucosa is constituted by stratified squamous epithelium, with mucous glands and lymphatic tissues. There are three layers of smooth muscle, involved in serosa. The histological structure of the crop is similar to the oesophagus. The mucous glands are reduced in size and the lymphatic tissues are dispersed in the connective tissue. There is a thin stratum of smooth muscle and other two wider layers of longitudinal and circular musculature.
Resumo:
The genetic divergence in 20 Eucalyptus spp. clones was evaluated by multivariate techniques based on 167 RAPD markers, of which 155 were polymorphic and 12 monomorphic. The measures of genetic distances were obtained by the arithmetic complement of the coefficients of Jaccard and of Sorenso-Nei and Li and evaluated by the hierarchical methods of Single Linkage clustering and Unweighted Pair Group Method with Arithmetic Mean (UPGMA). Independent of the dissimilarity coefficient, the greatest divergence was found between clones 7 and 17 and the smallest between the clones 11 and 14. Clone clustering was little influenced by the applied procedure so that, adopting the same percentage of divergence, the UPGMA identified two groups less for the coefficient of Sorenso-Nei and Li. The clones evidenced considerable genetic divergence, which is partly associated to the origin of the study material. The clusters formed by the UPGMA clustering algorithm associated to the arithmetic complement of Jaccard were most consistent.
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice-versa. The method is based on measuring the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. Viscosity measurements were made in the range from 1 to 3.5MHz at 22.5°C for automotive oil (SAE40) and at 15°C for olive oil. Moreover, measurements of the olive oil were also conducted in the range from 15 to 30°C at 3.5MHz. The experimental results agree with those provided by a rotational viscometer. © 2006 IEEE.
Resumo:
No tillage management is widely used by the Brazilian farmers and technicians like a soil conservation system, which reduces the soil losses by water erosion, increasing the infiltrated and stored water in soil, warranting environmental sustainability. No-tillage system does not invert the soil; it causes the creation of a compacted layer. The samples were taken in the agricultural year 2005/2006 in an Oxisoil at Selviria (MS/Brazil). The tillage management in the last 15 years was no-tillage system with crop rotation (maize -Zea mays L./bean - Phaseolus vulgaris L.). The analyzed soil physical properties were bulk density (BS), gravimetric water content (U) and mechanical resistance to penetration (RP) at three depths: 0-0.10 m, 0.10-0.20 m and 0.20-0.30 m. The samples were taken in a mesh with 117 sampled points covering an area of 0.16 ha. It was investigated the existence of compacted soil layer, using the mechanical resistance to penetration to 0.60 m depth with soil water content at field capacity. The data shows low coefficient of variation, except the resistance penetration data. Bulk density and gravimetric water content has a normal distribution. Only resistance to penetration at 0.10-0.20 m depth layer has a normal distribution. The correlation between different properties was low. The bulk density increases with depth; the increase of the values of soil bulk density are consistent with data in other papers, indicating there are not compaction problems for the crop development at the study area. Most of the values of resistance to penetration are lower than 2 MPa, being this value restrictive for root development. The analysis of resistance to penetration profile 0 to 0.60 m shows a compacted layer between 0.20-0.30 m. This compacted layer was caused by the conventional tillage system used at this area before the use of no-tillage system. The soil bulk density has higher values at the upper area, that it shows higher values of soil compaction. Although the values of bulk density and resistance to penetration are high, the area does not show great problems of soil compaction.
Resumo:
This paper focuses on the magnetoelectric coupling (ME) at room temperature in lanthanum modified bismuth ferrite thin film (BLFO) deposited on SrRuO 3-buffered Pt/TiO 2/SiO 2/Si(100) substrates by the soft chemical method. BLFO film was coherently grown at a temperature of 500 °C. The magnetoelectric coefficient measurement was performed to evidence magnetoelectric coupling behavior. Room temperature magnetic coercive field indicates that the film is magnetically soft. The maximum magnetoelectric coefficient in the longitudinal direction was close to 12 V/cmOe. Dielectric permittivity and dielectric loss demonstrated only slight dispersion with frequency due the less two-dimensional stress in the plane of the film. Polarization reversal was investigated by applying dc voltage through a conductive tip during the area scanning. We observed that various types of domain behavior such as 71 ° and 180° domain switching, and pinned domain formation occurred. Copyright © 2009 American Scientific Publishers All rights reserved.
Resumo:
The determination of the reflection coefficient of shear waves reflected from a solid-liquid interface is an important method in order to study the viscoelastic properties of liquids at high frequency. The reflection coefficient is a complex number. While the magnitude measurement is relatively easy and precise, the phase measurement is very difficult due to its strong temperature dependence. For that reason, most authors choose a simplified method in order to obtain the viscoelastic properties of liquids from the measured coefficient. In this simplified method, inconsistent viscosity results are obtained because pure viscous behavior is assumed and the phase is not measured. This work deals with an effort to improve the experimental technique required to measure both the magnitude and phase of the reflection coefficient and it intends to report realistic values for oils in a wide range of viscosity (0.092 - 6.7 Pa.s). Moreover, a device calibration process is investigated in order to monitor the dynamic viscosity of the liquid.
Resumo:
Using the results recently obtained for computing integrals over (non-minimal) pure spinor superspace, we compute the coefficient of the massless two-loop four-point amplitude from first principles. Contrasting with the mathematical difficulties in the RNS formalism where unknown normalizations of chiral determinant formulæ force the two-loop coefficient to be determined only indirectly through factorization, the computation in the pure spinor formalism can be smoothly carried out. © SISSA 2010.
Resumo:
Currently, one of factors that cause the production cost increase of soybean crop is the pesticide application. The most important disease in soybean crop is Asian rust, caused by Phakopsora pachyrhizi Sydon & P. Sydon fungus, which can cause significant loss of the production. Therefore, this work aimed at evaluation of different spraying techniques on the spray deposits and some parameters of soybean crop: grain size, weight of 1 000 seeds and the crop productivity. Two experiments were carried out in the experimental area of FCA/UNESP (Faculdade de Ciencias Agronomicas/Universidade Estadual Paulista Julio de Mesquita Filho) - Botucatu, S P, Brazil, in soybean crop, Conquista variety, in the 2007/2008 season. In the first experiment, three air levels (0, 9 and 29 km/h of the air speed generated by fan) with flat fan nozzle XR 8002 with a spray volume of 130 l/ha were compared with a rotating nozzle - using low volume oily - LVO at 40 l/ha of spray volume. The second experiment was carried out under the same conditions as the previous experiment, including a control treatment (untreated plants). The disease severity was evaluated using a diagrammatic scale with a visual evaluation of the disease on 15 leaves of each plot. The grades varied between 0.6 and 78.5% of the disease severity. The use of air assistance when compared with the rotating system nozzle did not show significant differences for spray deposits on adaxial and abaxial surface of the leaves in bottom part of the plant. The air assistance with maximum air speed (29 km/h) increased the productivity with respect of the other treatments.
Resumo:
The pathogens manifestation in plantations are the largest cause of damage in several cultivars, which may cause increase of prices and loss of crop quality. This paper presents a method for automatic classification of cotton diseases through feature extraction of leaf symptoms from digital images. Wavelet transform energy has been used for feature extraction while Support Vector Machine has been used for classification. Five situations have been diagnosed, namely: Healthy crop, Ramularia disease, Bacterial Blight, Ascochyta Blight, and unspecified disease. © 2012 Taylor & Francis Group.
Resumo:
In the last few years, crop rotation has gained attention due to its economic, environmental and social importance which explains why it can be highly beneficial for farmers. This paper presents a mathematical model for the Crop Rotation Problem (CRP) that was adapted from literature for this highly complex combinatorial problem. The CRP is devised to find a vegetable planting program that takes into account green fertilization restrictions, the set-aside period, planting restrictions for neighboring lots and for crop sequencing, demand constraints, while, at the same time, maximizing the profitability of the planted area. The main aim of this study is to develop a genetic algorithm and test it in a real context. The genetic algorithm involves a constructive heuristic to build the initial population and the operators of crossover, mutation, migration and elitism. The computational experiment was performed for a medium dimension real planting area with 16 lots, considering 29 crops of 10 different botanical families and a two-year planting rotation. Results showed that the algorithm determined feasible solutions in a reasonable computational time, thus proving its efficacy for dealing with this practical application.
Resumo:
Soil management and crop rotations can affect P and K budget in soil, decreasing losses, and increasing fertilizer use efficiency. The P and K budget in the soil-plant system at depths up to 60. cm was studied for different soil managements and crop rotations under no-till for three years in Botucatu, São Paulo, Brazil. The investigated crop rotations were: triticale (X Triticosecale) and sunflower (Helianthus annuus) cropped in autumn-winter; pearl millet (Pennisetum glaucum), forage sorghum (Sorghum bicolor), and Sunn hemp (Crotalaria juncea) were grown in the spring, as well as an additional treatment with chiseling followed by a fallow period; and soybean (Glycini max, L., Merril) was cropped in the summer. Each year triticale and sunflower were grown in plots and pearl millet, forage sorghum, Sunn hemp and of chisel/fallow in sub-plots. The triticale/millet rotation led to the largest decrease in available P within the 0-0.60. m layer of the soil profile and the largest K increase within the 0-0.05. m layer. Potassium mobility in the soil profile and the increases in the available K content in the 0.40-0.60. m layer were independent of the management system. Crop rotations with or without chiseling are not effective in preventing soil P losses. There is considerable K leaching below 0.60. m, but chiseling and the use of high K accumulating plants as triticale results in lower K losses. © 2012 Elsevier B.V.