397 resultados para crestal implant placement
Resumo:
Removable partial denture improve functional and aesthetic failures caused by partial loss of teeth, however specific characteristics of each patients can determine the success of treatment, especially with regard to the support of the prosthesis, which may depend on teeth, the combination of teehe and mucosa and currently associated with the dental implants. The aim of this study is report a case in which there was the need of the association, to enable better aesthetics and self-esteem to the patients. After implant placement and fabrication of prosthetic patient reported satisfaction with the rehabilitation treatment, improving their quality of life.
Resumo:
The residual alveolar ridges may be unfavorable for implant placement. The edentulous maxilla is often challenging for the oral surgeon because of the lack of bone as a consequence of alveolar ridge resorption and/or maxillary sinus pneumatization. Accidents or complications may occur when some of these issues are not being known. This article reports one case of implant displaced into the maxillary sinus, 27 days after sinus bone augmentation with simultaneous dental implant installation, causing moderated sinusitis symptoms. The implant was removed through oral cavity access to maxillary sinus.
Avaliação clínica e radiográfica de pacientes submetidos ao levantamento da membrana do seio maxilar
Resumo:
Implant dentistry is a dental specialty which presents great predictability in the rehabilitation at posterior, partially edentulous maxillary areas. Early tooth loss results in significant jaw remodeling. The maxillary sinus lifting followed by implant placement is a predictable technique initially described in 1980. Since then, several different techniques have been investigated varying filling materials and the management of complications in order to provide effective guidance in the rehabilitation of these patients. The current study evaluated ten patients who underwent sinus lifting before implant placement and crown installation. First, a retrospective analysis of the medical records was conducted to obtain information about possible postoperative complications. Clinical and radiographic analyses were performed at baseline and 180 days after surgeries. The sinus lifting with immediate implant placement provided satisfactory outcomes and can be considered a safe procedure. Treatment predictability was demonstrated in 90% of patients and for 86.96% of implants placed. It is important to highlight knowledge of anatomical structures at this area, the use of delicate surgical techniques, and strict patient follow-up.
Resumo:
Objectives: to evaluate implant survival immediately placed after tooth extraction considering different sites, prosthodontic modalities, and the need for biomaterials. Material and methods: dental records of 500 patients treated with dental implants between 2004 and 2011 were screened. Results: only 200 records (20%) corresponded to immediate implants. Reasons for tooth extraction included extensive caries, bone loss, and root fractures. From the 197 immediate dental implants, 86 were placed in the maxilla with a survival rate of 93.9% and 111 in the mandible (survival rate of 99.1%). The overall survival rate was 97.46%. Prosthodontic modalities identified were: Brånemark classic complete denture screwed prostheses (36%), overdentures (5.6%), fixed partial denture (31%), and single-tooth prostheses (27.4%). Also, it was observed that in 33% of cases there was a need for the use of grafts and/or biomaterials. Conclusion: it can be concluded that, when correctly indicated, immediate implants are an excellent choice. The anterior mandibular region, screwed and overdenture-type prostheses presented higher success rates when associated to immediate implant placement. The need for bone graft/biomaterial does not affect the clinical results.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES
Resumo:
To compare peri-implant soft- and hard-tissue integration at implants installed juxta- or sub-crestally. Furthermore, differences in the hard and soft peri-implant tissue dimensions at sites prepared with drills or sonic instruments were to be evaluated. Three months after tooth extraction in six dogs, recipient sites were prepared in both sides of the mandible using conventional drills or a sonic device (Sonosurgery(®) ). Two implants with a 1.7-mm high-polished neck were installed, one with the rough/smooth surface interface placed at the level of the buccal bony crest (control) and the second placed 1.3 mm deeper (test). After 8 weeks of non-submerged healing, biopsies were harvested and ground sections prepared for histological evaluation. The buccal distances between the abutment/fixture junction (AF) and the most coronal level of osseointegration (B) were 1.6 ± 0.6 and 2.4 ± 0.4 mm; between AF and the top of the bony crest (C), they were 1.4 ± 0.4 and 2.2 ± 0.2 mm at the test and control sites, respectively. The top of the peri-implant mucosa (PM) was located more coronally at the test (1.2 ± 0.6 mm) compared to the control sites (0.6 ± 0.5 mm). However, when the original position of the bony crest was taken into account, a higher bone loss and a more apical position of the peri-implant mucosa resulted at the test sites. The placement of implants into a sub-crestal location resulted in a higher vertical buccal bone resorption and a more apical position of the peri-implant mucosa in relation to the level of the bony crest at implant installation. Moreover, peri-implant hard-tissue dimensions were similar at sites prepared with either drills or Sonosurgery(®) .
Resumo:
In implant therapy, a peri-implant bone resorption has been noticed mainly in the first year after prosthesis insertion. This bone remodeling can sometimes jeopardize the outcome of the treatment, especially in areas in which short implants are used and also in aesthetic cases. To avoid this occurrence, the use of platform switching (PS) has been used. This study aimed to evaluate the biomechanical concept of PS with relation to stress distribution using two-dimensional finite element analysis. A regular matching diameter connection of abutment-implant (regular platform group [RPG]) and a PS connection (PS group [PSG]) were simulated by 2 two-dimensional finite element models that reproduced a 2-piece implant system with peri-implant bone tissue. A regular implant (prosthetic platform of 4.1 mm) and a wide implant (prosthetic platform of 5.0 mm) were used to represent the RPG and PSG, respectively, in which a regular prosthetic component of 4.1 mm was connected to represent the crown. A load of 100 N was applied on the models using ANSYS software. The RPG spreads the stress over a wider area in the peri-implant bone tissue (159 MPa) and the implant (1610 MPa), whereas the PSG seems to diminish the stress distribution on bone tissue (34 MPa) and implant (649 MPa). Within the limitation of the study, the PS presented better biomechanical behavior in relation to stress distribution on the implant but especially in the bone tissue (80% less). However, in the crown and retention screw, an increase in stress concentration was observed.
Resumo:
Background: Prosthetic rehabilitation of the posterior maxilla with dental implants is often difficult because of proximity to the maxillary sinus and insufficient bone height. Maxillary sinus floor augmentation procedures aim to obtain enough bone with an association between biomaterials and autogenous bone.Purpose: the purpose of this study was to evaluate histomorphometrically two grafting materials (calcium phosphate and Ricinus communis polymer) used in maxillary sinus floor augmentation associated with autogenous bone.Materials and Methods: Biopsies were taken from 10 consecutive subjects (mean age 45 years) 10 months after maxillary sinus floor augmentation. The sinus lift was performed with a mixture of autogenous bone and R. communis polymer or calcium phosphate in a 1:2 proportion. Routine histologic processing and staining with hernatoxylin and eosin were performed.Results: the histomorphometric analysis indicated satisfactory regenerative results in both groups for a mean of bone tissue in the grafted area (44.24 +/- 13.79% for the calcium phosphate group and 38.77 +/- 12.85% for the polymer group). Histologic evaluation revealed the presence of an inflammatory infiltrate of mononuclear prevalence that, on average, was nonsignificant. The histologic sections depicted mature bone with compact and cancellous areas in both groups.Conclusion: the results indicated that both graft materials associated with the autogenous bone were biocompatible, although both were still present after 10 months.
Resumo:
Objectives: The aim of the present study was to evaluate histometric changes around dental implants inserted at different levels in relation to the crestal bone, under different loading conditions.Material and methods: Thirty-six implants were inserted in the edentulous mandible of six mongrel dogs. Each implant was assigned to an experimental group according to the distance from the top of the implant to the crestal bone: Bone Level (at the crestal bone level), Minus 1 (1 mm below the crestal bone) or Minus 2 group (2 mm below the crestal bone). Each hemimandible was submitted to a loading protocol: conventional or immediate restoration. After 90 days, the animals were killed. Specimens were processed, and measurements were performed concerning the length of soft and hard peri-implant tissues. Data were analyzed using ANOVA and Student's t test (alpha=5%).Results: Among conventionally restored sites, the distance from the most coronal position of soft tissue margin (PSTM) and first bone-implant contact (fBIC) was greater for Minus 2 than for Bone Level and Minus 1 sites (P=0.03), but significant differences were not observed among immediately restored sites. Differences among groups were not observed concerning the PSTM, and the distance from the implant-abutment junction to fBIC. Greater amounts of lateral bone loss were observed for conventionally than for immediately restored sites (P=0.006).Conclusions: These findings suggest that the apical positioning of the top of the implant may not jeopardize the position of soft peri-implant tissues, and that immediate restoration can be beneficial to minimize lateral bone loss. Further studies are suggested to evaluate the clinical significance of these results in longer healing periods.
Resumo:
Objectives: To verify the consequences of implant-supported fixed oral rehabilitation on the quality of life (QL) of elderly individuals.Material and methods: Fifteen patients were studied, being 10 females and five males; all were aged > 60 years, were completely edentulous, wore removable dentures on both arches, and were treated with implant-supported fixed dentures. Three QL questionnaires were applied, two related to the oral conditions (Oral Impact on Daily Performance - OIDP - and Oral Health Impact Profile, short version - OHIP-14) and one dealing with global aspects (World Health Organization Quality of Life - WHOQOL-BREF), before 3, 6, and 18 months after surgical placement of implants.Results: Scores in the OIDP and OHIP-14 questionnaires were better after dental treatment. The WHOQOL-BREF was less sensitive, confirming the higher reliability of specific questionnaires (focal) compared with general questions in such situations.Conclusion: Treatment with implant-supported fixed prostheses improved QL in the elderly; these effects are better detected by specific instruments focused on the subject.
Resumo:
Purpose: The aim of this study was to evaluate the possibility of obtaining guided bone regeneration using a poly-tetrafluoroethylene (PTFE) nonporous barrier for 2 endosseous implants, partially inserted in tibiae of rabbits.Materials and Methods: Histologic characteristics of the interface between titanium implants (one group with titanium plasma-coated implants and the other group with acid-treated surfaces) and of the regenerated bone were also studied. Twenty screw-vent implants were placed in tibiae of 5 male New Zealand rabbits, 2 at the right side and 2 at the left side, protruding 3 mm from the bone level, to create a horizontal bone defect. At the experimental group the implants were with a PTFE nonporous barrier, whereas no barriers were used in contralateral implants. Animals were sacrificed 3 months after surgery and biopsy specimens were evaluated histologically and histomorphometrically under light microscopy. Student's t test was used for statistical analysis.Results: The histologic measurements showed a mean gain in bone height of 2.15 and 2.42 mm for the barrier group and 1.95 and 0.43 mm for the control group, for the titanium plasma-spray and acid-treated implant surfaces, respectively.Conclusion: The results of the investigation revealed that the placement of implants protruding 3 nun from crestal bone defects may result in vertical bone augmentation using a nonporous PTFE barrier. (Implant Dent 2009;18:182-191)
Resumo:
Purpose: The goal of this study was to evaluate microbiota and radiographic peri-implant bone loss associated with ligature-induced peri-implantitis. Materials and Methods: Thirty-six dental implants with 4 different surfaces (9 commercially pure titanium, 9 titanium plasma-sprayed, 9 hydroxyapatite, and 9 acid-etched) were placed in the edentulous mandibles of 6 dogs. After 3 months with optimal plaque control, abutment connection was performed. On days 0, 20, 40, and 60 after placement of cotton ligatures, both microbiologic samples and periapical radiographs were obtained. The presence of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia/nigrescens, Campylobacter spp, Capnocytophaga spp, Fusobacterium spp, beta-hemolytic Streptococcus, and Candida spp were evaluated culturally. Results: P intermedia/nigrescens was detected in 13.89% of implants at baseline and 100% of implants at other periods. P gingivalis was not detected at baseline, but after 20 and 40 days it was detected in 33.34% of implants and at 60 days it was detected in 29.03% of dental implants. Fusobacterium spp was detected in all periods. Streptococci were detected in 16.67% of implants at baseline and in 83.34%, 72.22%, and 77.42% of implants at 20, 40, and 60 days, respectively. Campylobacter spp and Candida spp were detected in low proportions. The total viable count analysis showed no significant differences among surfaces (P = .831), although a significant difference was observed after ligature placement (P < .0014). However, there was no significant qualitative difference, in spite of the difference among the periods. The peri-implant bone loss was not significantly different between all the dental implant surfaces (P = .908). Discussion and Conclusions: These data suggest that with ligature-induced peri-implantitis, both time and periodontal pathogens affect all surfaces equally after 60 days.
Resumo:
Purpose: Tissue reactions to 4 different implant surfaces were evaluated in regard to the development and progression of ligature-induced peri-implantitis. Materials and Methods: In 6 male mongrel dogs, a total of 36 dental implants with different surfaces (9 titanium plasma-sprayed, 9 hydroxyapatite-coated, 9 acid-etched, and 9 commercially pure titanium) were placed 3 months after mandibular premolar extraction. After 3 months with optimal plaque control, abutment connection was performed. Forty-five days later, cotton ligatures were placed around the implants to induce peri-implantitis. At baseline and 20, 40, and 60 days after placement, the presence of plaque, peri-implant mucosal redness, bleeding on probing, probing depth, clinical attachment loss, mobility, vertical bone loss, and horizontal bone loss were assessed. Results: The results did not show significant differences among the surfaces for any parameter during the study (P > .05). All surfaces were equally susceptible to ligature-induced peri-implantitis over time (P < .001). Correlation analysis revealed a statistically significant relationship between width of keratinized tissue and vertical bone loss (r 2 = 0.81; P = .014) and between mobility and vertical bone loss (r 2 = 0.66; P = .04), both for the titanium plasma-sprayed surface. Discussion and Conclusions: The present data suggest that all surfaces were equally susceptible to experimental peri-implantitis after a 60-day period.
Resumo:
Background: Recent clinical studies have described maxillary sinus floor augmentation by simply elevating the maxillary sinus membrane without the use of adjunctive grafting materials. Purpose: This experimental study aimed at comparing the histologic outcomes of sinus membrane elevation and simultaneous placement of implants with and without adjunctive autogenous bone grafts. The purpose was also to investigate the role played by the implant surface in osseointegration under such circumstances. Materials and Methods: Four tufted capuchin primates had all upper premolars and the first molar extracted bilaterally. Four months later, the animals underwent maxillary sinus membrane elevation surgery using a replaceable bone window technique. The schneiderian membrane was kept elevated by insertion of two implants (turned and oxidized, Brånemark System®, Nobel Biocare AB, Göteborg, Sweden) in both sinuses. The right sinus was left with no additional treatment, whereas the left sinus was filled with autogenous bone graft. Implant stability was assessed through resonance frequency analysis (Osstell™, Integration Diagnostics AB, Göteborg, Sweden) at installation and at sacrifice. The pattern of bone formation in the experimental sites and related to the different implant surfaces was investigated using fluorochromes. The animals were sacrificed 6 months after the maxillary sinus floor augmentation procedure for histology and histomorphometry (bone-implant contact, bone area in threads, and bone area in rectangle). Results: The results showed no differences between membrane-elevated and grafted sites regarding implant stability, bone-implant contacts, and bone area within and outside implant threads. The oxidized implants exhibited improved integration compared with turned ones as higher values of bone-implant contact and bone area within threads were observed. Conclusions: The amount of augmented bone tissue in the maxillary sinus after sinus membrane elevation with or without adjunctive autogenous bone grafts does not differ after 6 months of healing. New bone is frequently deposited in contact with the schneiderian membrane in coagulum-alone sites, indicating the osteoinductive potential of the membrane. Oxidized implants show a stronger bone tissue response than turned implants in sinus floor augmentation procedures. © 2006 Blackwell Publishing, Inc.
Resumo:
Aim: To evaluate the influence of implant positioning into extraction sockets on osseointegration. Material and methods: Implants were installed immediately into extraction sockets in the mandibles of six Labrador dogs. In the control sites, the implants were positioned in the center of the alveolus, while in the test sites, the implants were positioned 0.8 mm deeper and more lingually. After 4 months of healing, the resorptive patterns of the alveolar crest were evaluated histomorphometrically. Results: All implants were integrated in mineralized bone, mainly composed of mature lamellar bone. The alveolar crest underwent resorption at the control as well as at the test sites. After 4 months of healing, at the buccal aspects of the control and test sites, the location of the implant rough/smooth limit to the alveolar crest was 2±0.9 mm and 0.6±0.9 mm, respectively (P<0.05). At the lingual aspect, the bony crest was located 0.4 mm apically and 0.2 mm coronally to the implant rough/smooth limit at the control and test sites, respectively (NS). Conclusions: From a clinical point of view, implants installed into extraction sockets should be positioned approximately 1 mm deeper than the level of the buccal alveolar crest and in a lingual position in relation to the center of the alveolus in order to reduce or eliminate the exposure above the alveolar crest of the endosseous (rough) portion of the implant. © 2009 John Wiley & Sons A/S.