162 resultados para cholinergic antinociception
Resumo:
In this study we investigated the influence of electrolytic lesion or of opioid agonist injections into the lateral hypothalamus (LH) on the dipsogenic, natriuretic, kaliuretic, antidiuretic, presser, and bradycardic effects of cholinergic stimulation of the medial septal area (MSA) in rats. Sham- and LH-lesioned male Holtzman rats received a stainless steel cannula implanted into the LH. Other groups of rats had cannulas implanted simultaneously into the MSA and LH. Carbachol (2 nmol) injection into the MSA induced water intake, presser, and bradycardic responses. LH lesion reduced all of these effects (1-3 and 15-18 days). Previous injection of synthetic opiate agonist, FK-33824 (100 ng), into the LH reduced the water intake, natriuresis, kaliuresis, and presser responses induced by carbachol injected into the MSA. These data show that both electrolytic lesion or injection of an opiate agonist in the LH reduces the fluid-electrolyte and cardiovascular responses to cholinergic activation of the MSA. The involvement of LH with central excitatory and inhibitory mechanisms related to fluid-electrolytic and cardiovascular control is suggested.
Resumo:
Angiotensin II (ANG II) administered centrally produces drinking by acting on subtype 1 ANG II (AT1) receptors, Carbachol, a cholinergic receptor agonist, also induces drinking behavior by a central action. In the present study we determined whether the response to carbachol also involves AT1 receptors. Male Holtzman rats (250-300 g) with stainless steel cannula implanted into the lateral ventricle (LV) were used. Water intake after injection of 0.15 M NaCl (1.0 mu l) into the LV was 0.2 +/- 0.01 ml/h (N = 8). The AT1 receptor antagonist DUP-753 (50 nmol/mu l) injected into the LV reduced water intake induced by ANG II (10 nmol/mu l) from 9.2 +/- 1.4 to 0.4 +/- 0.1 ml/h (N = 8), and water intake induced by carbachol (2 nmol/mu l) from 9.8 +/- 1.4 ml/h to 3.7 +/- 0.8 ml/h (N = 8), These results suggest that AT1 receptors play a role in the drinking behavior observed after central cholinergic stimulation in rats.
Resumo:
In the present study, we investigated the effect of anteroventral third ventricle (AV3V) lesion on pressor, tachycardic, dipsogenic, natriuretic, and kaliuretic responses induced by the injection of the cholinergic agonist carbachol into the ventromedial hypothalamic nucleus (VMH) of rats. Male rats with sham or AV3V lesion and a stainless steel cannula implanted into the VMH were used. Carbachol (2 nmol) injected into the VMH of sham rats produced pressor (32 +/- 4 mmHg). tachycardic (83 +/- 14 bpm), dipsogenic (8.2 +/- 1.1 ml/h). natriuretic (320 +/- 46-mu-Eq/120 min), and kaliuretic (155 +/- 20-mu-Eq/120 min) responses. In AV3V-lesioned rats (2 and 15 days), the pressor (4 +/- 2 and 15 +/- 2 mmHg. respectively), dipsogenic (0.3 +/-0.2 and 1.4 +/- 0.7 ml/h), natriuretic (17 +/- 7 and 99 +/- 21-mu-Eq/120 min), and kaliuretic (76 +/- 14 and 79 +/- 7-mu-Eq/120 min) responses induced by carbachol injection into the VMH were reduced. The tachycardia was also abolished (27 +/- 15 and -23 +/-29 bpm, respectively). These results show that the AV3V region is essential for the pressor, tachycardic, dipsogenic, natriuretic. and kaliuretic responses induced hy cholinergic activation of the VMH in rats.
Resumo:
We studied the effect of the alpha(1)- and alpha(2)-adrenergic receptors of the lateral hypothalamus (LH) on the control of water intake induced by injection of carbachol into the medial septal area (MSA) of adult male Holtzman rats (250-300 g) implanted with chronic stainless steel cannulae into the LH and MSA. The volume of injection was always 1 mu l and was injected over a period of 30-60 s. For control, 0.15 M NaCl was used. Clonidine (20 nmol) but not phenylephrine (160 nmol) injected into the LH inhibited water intake induced by injection of carbachol (2 nmol) into the MSA, from 5.4 +/- 1.2 ml/h to 0.3 +/- 0.1 and 3.0 +/- 0.9 ml/h, respectively (N = 26). When we injected yohimbine (80 nmol) + clonidine (20 nmol) and prazosin (40 nmol) + clonidine (20 nmol) into theLH, water intake induced by injection of carbachol into the MSA was inhibited from 5.4 +/- 1.2 ml/h to 0.8 +/- 0.5 and 0.3 +/- 0.2 ml/h, respectively (N = 19). Water intake induced by carbachol (2 nmol) injected into the MSA was decreased by previous injection of yohimbine (80 nmol) + phenylephrine (160 nmol) and prazosin (40 nmol) + phenylephrine (l60 nmol) from 5.4 +/- 1.2 ml/h to 1.0 +/- 0.7 and 1.8 +/- 0.8 ml/h, respectively (N = 16). The cannula reached both the medial septal area in its medial portion and the lateral hypothalamus. It has been suggested that the different pathways for induction of drinking converge on a final common pathway. Thus, adrenergic stimulation of alpha(2),-adrenoceptors ofLH can influence this final common pathway.
Resumo:
Crotoxin (CTX). a neurotoxin isolated from the venom of the South American rattlesnake Crotalus durissus terrificus. induces analgesia. In this study, we evaluated the antinociceptive effect of CTX in a model of neuropathic pain induced by rat sciatic nerve transection. Hyperalgesia was detected 2 h after nerve transection and persisted for 64 days. Immersion of proximal and distal nerve stumps in CTX solution (0.01 mM for 10 s), immediately after nerve transection, blocked hyperalgesia. The antinociceptive effect of CTX was long-lasting, since it was detected 2 h after treatment and persisted for 64 days. CTX also delayed, but did not block, neurectomy-induced neuroma formation. The effect of CTX was blocked by zileuton (100 mg/kg, p.o.) and atropine (10 mg/kg. i.p.), and reduced by yohimbine (2 mg/kg, i.p.) and methysergide (5 mg/kg, i.p.). on the other hand. indomethacin (4 mg/kg, i.v.). naloxone (1 mg/kg, i.p.). and N-methyl atropine (30 mg/kg, i.p.) did not interfere with the effect of CTX. These results indicate that CTX induces a long-lasting antinociceptive effect in neuropathic pain, which is mediated by activation of central muscarinic receptors and partially, by activation of alpha-adrenoceptors and 5-HT receptors. Eicosanoids derived from the lipoxygenase pathway modulate the action of crotoxin. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The effect was investigated of the K+ channel blocker, glibenclamide, on the ability of Crotalus durissus cumanensis venom (CDCM) to promote peripheral antinociception. This was measured by formalin-induced nociception in male Swiss mice. CDCM (200 and 300 mu g/kg) produced an antinociceptive effect during phase 2 in the formalin test. The effect of CDCM (200 mu g/kg) was unaffected by the ATP-sensitive K+ channel blocker glibenclamide (2 mg/kg). These results suggest that CDCM is effective against acute pain. However, the ATP-sensitive K+ channels pathway is not contributable to the antinoeiceptive mechanism of CDCM.
Resumo:
Glutamate-NMDA (N-methyl-D-aspartate) receptor activation within the periaqueductal gray (PAG) leads to antinociceptive, autonomic and behavioral responses characterized as the fear reaction. We have recently demonstrated that the vigorous defensive-like behaviors (e.g. jumping and running) and antinociception induced by intra-PAG injection of N-methyl-D-aspartate (NMDA) were completely blocked by prior infusion of N(omega)-propyl-L-arginine (NPLA), a specific neuronal nitric oxide synthesis (nNOS) enzyme inhibitor, into the same midbrain structure. It remains unclear however, whether the inhibition of nNOS within the mouse PAG changes the anxiety-like behavior per se or the effects of the inhibition of nNOS depend on the suppression of downstream of glutamate-NMDA receptor activation. This study investigated whether intra-PAG infusion of NPLA (i) attenuates anxiety in the elevated plus-maze (EPM) and (ii) antagonizes the anxiogenic-like effects induced by intra-PAG injection of NMDA. Test sessions were videotaped and subsequently scored for conventional indices of anxiety (percentage of open arm entries and percentage of open arm time) and locomotor activity (closed arm entries). Results showed that intra-PAG infusions of NPLA (0.2, 0.4 or 0.8 nmol/0.1 mu l) did not alter significantly any behavioral response in the EPM when compared to control group (Experiment 1). Intra-PAG infusion of NMDA (0 and 0.02 nmol/0.1 mu l; a dose that does not provoke vigorous defensive behaviors per se in mice) significantly reduced open arm exploration, confirming an anxiogenic-like effect (Experiment 2). When injected into the PAG 10 min prior local NMDA injection (0.02 nmol/0.1 mu l), NPLA (0.4 nmol/0.1 mu l) was able to revert the anxiogenic-like effect of glutamate-NMDA receptor activation. Neither intra-PAG infusion of NMDA nor NPLA altered closed arm entries, a widely used measure of locomotor activity in the EPM. These results suggest that intra-PAG nitric oxide synthesis does not play a role on anxiety-like behavior elicited during EPM exposure; however its synthesis is important for the proaversive effects produced by activation of glutamate-NMDA receptors located within this limbic midbrain structure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to evaluate the effects of caloric restriction (CR) on myenteric neurons in the duodenum of Wistar rats during aging. Thirty rats were divided into three groups: the C group (six-month-old animals that were fed a normal diet from weaning until six months of age), the SR group (18-month-old animals that were fed a normal diet from weaning until 18 months of age) and the CR group (18-month-old animals that were fed a 30% CR diet after six months of age). After 12 months, the animals were euthanized. Whole-mount preparations of the duodenums were either stained with Giemsa or underwent NADPH-diaphorase histochemistry to determine the general myenteric neuron population and the nitrergic neuron subpopulation (NADPH-d +), respectively. The NADPH-d-negative (NADPH-d -) neuron population was estimated based on the difference between the Giemsa-stained and NADPH-d + neurons. The neurons were counted, and the cell body areas were measured. Aging was associated with neuronal loss in the SR group, which was minimized by caloric restriction in the CR group. The density (mm(2)) of the Giemsa-stained neurons was higher in the SR group (79.09 +/- 6.25) than in the CR (92.37 +/- 11.6) and C (111.68 +/- 15.26) groups. The density of the NADPH-d + neurons was higher in the SR group (44.90 +/- 5.88) than in the C (35.75 +/- 1.6) and RC (39.14 +/- 7.02) groups. The density of NADPH-d - neurons was higher in the CR (49.73 +/- 12.08) and C (75.64 +/- 17.05) groups than in the SR group (33.82 +/- 4.5). In the C group, 32% and 68% of the Giemsa-stained myenteric neurons were NADPH-d + or NADPH-d -, respectively. With aging (SR group), the percentage of nitrergic neurons (56.77%) increased, whereas the percentage of NADPH-d - neurons (43.22%) decreased. In the CR group, the change in the percentage of nitrergic (42.37%) and NADPH-d - (57.62%) neurons was lower. As NADPH-d - neurons will be mostly cholinergic neurons, CR appears to reduce the loss of cholinergic neurons during aging. The cell body dimensions (mu m(2)) were not altered by aging or CR. Thus. CR had a protective effect on myenteric neurons during aging. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
1. Tityustoxin (TsTx), a toxic fraction of Tityus serrulatus venom, was studied on the isolated guinea-pig vas deferens. It increased significantly the maximal response of the preparation to both norepinephrine and acetylcholine and decreased the effective median dose of norepinephrine. 2. The effect of TsTx on norepinephrine median dose was unchanged when atropinized or pharmacologically 'denervated' preparations were used but was abolished when both procedures were associated. 3. Atropinization of pharmacologically denervated muscles almost never modify the TsTx-induced increase in the maximal response to norepinephrine. 4. On denervated or phentolamine-treated muscles TsTx-induced increase in the maximal response to acetylcholine was abolished. 5. It was concluded that toxin predominantly induces adrenergic postsynaptic supersensitivity. 6. Of minor significance, it also induces presynaptic cholinergic and adrenergic supersensitivity. 7. Comparison of these results with those of crude venom indicates that TsTx effects may result from the sum of the effects of subcomponents not demonstrated by the chemical procedures here utilized.
Resumo:
1. 1. The mechanisms behind cardiac control were investigated in the South American lungfish, Lepidosiren paradoxa, using fish with chronically implanted cannulae and electromagnetic flow probes. In addition, a preliminary study was made of the cardiovascular events associated with air breathing. 2. 2. The study suggests that the heart of Lepidosiren is controlled by cholinergic vagal fibres which, in some animals, exert a tonic influence in the resting fish. Cyclic changes in heart rate in association with air breaths is due to modulation of this cholinergic tonus. 3. 3. In addition to the variable cholinergic tonus, there appears to be a relatively stable adrenergic tonus on the heart, which causes an elevated heart rate. The adrenergic tonus is likely to be due to local release of catecholamines from endogenous chromaffin cells within the atrium. 4. 4. Preliminary results suggest that pulmonary arterial flow increases by about 50% immediately following an air breath. The mechanism behind this increase probably involves both an elevation of the heart rate and a redistribution of blood flow into the pulmonary circuit. © 1989.