99 resultados para chaotic and diffusive motion


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Although the effect of symptomatic back pain on functional movement has been investigated, changes to spinal movement patterns in essentially pain-free people with a history of recurrent back pain are largely unreported. Reaching activities, important for everyday and occupational function, often present problems to such people, but have not been considered in this population. The purpose of this study was to compare the amplitude and timing of spinal and hip motions during two, seated reaching activities in people with and without a history of recurrent low back pain (RLBP).Methods: Spinal and hip motions during reaching downward and across the body, in both directions, were tracked using electromagnetic sensors. Analyses were conducted to explore the amplitudes, velocities and timings of 3D segmental movements and to compare controls with subjects with recurrent, but asymptomatic lumbar or lumbosacral pain.Findings: We detected significant differences in the amplitude and timing of movement in the lower thoracic region, with the RLBP group restricting movement and demonstrating compensatory increased motion at the hip. The lumbar region displayed no significant between-group differences. The order in which the spinal segments achieved peak velocity in cross-reaching was reversed in RLBP compared to controls, with lumbar motion leading in controls and lagging in RLBP.Interpretation: Subjects with a history of RLBP show a number of altered kinematic features during reaching activities which are not related to the presence or intensity of pain, but which suggest adaptive changes to movement control. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Wisdom's method is applied to 5 : 2 and 7 : 3 resonances. Comparisons with Yoshikawa's nontruncated model are performed: for moderate values of eccentricity, agreement is good, especially for the 5 : 2 resonance. A clear difference between the 5 : 2 and the 7 : 3 resonances is observed: the former (like the 3 : 1 resonance) can suffer significant variations of eccentricity, even starting from very small values close to 0, while the latter seems to undergo such variations but the minimum eccentricity cannot be less than a value near 0.1. In the 7 : 3 resonance, some chaotic motion trapped in a region of very small eccentricity is possible. This is in contrast with the 5 : 2 commensurability, since chaos in this case seems to be always related to significant variations of eccentricity. Recent calculations performed by Šidlichovskÿ using mapping techniques show agreement with the results presented here. © 1992.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper the dynamical interactions of a double pendulum arm and an electromechanical shaker is investigated. The double pendulum is a three degree of freedom system coupled to an RLC circuit based nonlinear shaker through a magnetic field, and the capacitor voltage is a nonlinear function of the instantaneous electric charge. Numerical simulations show the existence of chaotic behavior for some regions in the parameter space and this behaviour is characterized by power spectral density and Lyapunov exponents. The bifurcation diagram is constructed to explore the qualitative behaviour of the system. This kind of electromechanical system is frequently found in robotic systems, and in order to suppress the chaotic motion, the State-Dependent Riccati Equation (SDRE) control and the Nonlinear Saturation control (NSC) techniques are analyzed. The robustness of these two controllers is tested by a sensitivity analysis to parametric uncertainties.