229 resultados para biofilms
Resumo:
Our understanding of dental plaque biofilm has evolved since the nonspecific plaque hypothesis that considered plaque as a nonspecific mass of native microorganisms that, because of lack of oral hygiene, builds up in proportions great enough to overcome the host resistance threshold and affect the tooth structure and tooth supporting tissues. A great diversity of microorganisms-over 700 species-was detected in the oral cavity, and evidence shows that the investigation of specific microorganisms or associations of microorganisms as etiological agents for periodontal diseases and caries is not a simplistic approach. Although clinical evidence shows that oral mechanical hygiene is fundamental to prevent and control caries and periodontal disease, it is important to highlight that optimal control is not achieved by most individuals. Thus the complementary use of chemotherapeutic agents has been investigated as a way to overcome the deficiencies of mechanical oral hygiene habits, insofar as they reduce both plaque formation and gingival inflammation, and represent a valid strategy to change the biofilm and maintain dental and periodontal health. The role of the dental professional is to monitor patients and offer them the best recommendations to preserve oral health throughout their life. With this in mind, chemical control should be indicated as part of daily oral hygiene, together with mechanical procedures, for all individuals who present supragingival and/or subgingival biofilm, taking into account age, physical and/or psychological limitations, allergies, and other factors.
Resumo:
In the majority of cases of bone fracture requiring surgery, orthopedic implants (screw-plate and screw) are used for osteosynthesis and the infections associated with such implants are due to the growth of microorganisms in biofilms. The objective of this study was to identify microorganisms recovered from osteosynthesis implants used to fix bone fractures, to assess the viability of the cells and the ability of staphylococci to adhere to a substrate and to determine their sensitivity/resistance to antimicrobials. After surgical removal, the metal parts of austenitic stainless steel (ASTM F138/F139 or ISO NBR 5832-1/9) were transported to the Laboratory of Clinical Microbiology, washed in buffer and subjected to ultrasonic bath at 40±2 kHz for 5 minutes. The sonicated fluid was used to seed solid culture media and cell viability was assessed under the microscope by with the aid of a fluorescent marker. The production of extracellular polysaccharide by Staphylococcus spp. was investigated by means of adhesion to a polystyrene plate. The profile of susceptibility to antimicrobials was determined by the disk diffusion assay. The most frequently isolated bacteria included coagulase-negative Staphylococcus resistant to erythromycin, clindamycin and oxacillin. Less frequent were Pseudomonas aeruginosa resistant to trimethoprim/sulfamethoxazole and ampicillin, Acinetobacter baumannii resistant to ceftazidime, Enterobacter cloacae resistant to cephalothin, cefoxitin, cefazolin, levofloxacin and ciprofloxacin, Bacillus spp. and Candida tropicalis. The observation of slides by fluorescence microscope showed clusters of living cells embedded in a transparent matrix. The test for adherence of coagulase-negative Staphylococcus to a polystyrene plate showed that these microorganisms produce extracellular polysaccharide. In conclusion, the metal parts were colonized by bacteria related to orthopedic implant infection, which were resistant to multiple antibiotics.
Resumo:
The incidence of fungal infections has increased significantly, so contributing to morbidity and mortality. This is caused by an increase in antimicrobial resistance and the restricted number of antifungal drugs, which retain many side effects. Candida species are major human fungal pathogens that cause both mucosal and deep tissue infections. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth. Biofilms are biological communities with a high degree of organization, in which micro-organisms form structured, coordinated and functional communities. These biological communities are embedded in a self-created extracellular matrix. Biofilm production is also associated with a high level of antimicrobial resistance of the associated organisms. The ability of Candida species to form drugresistant biofilms is an important factor in their contribution to human disease. The study of plants as an alternative to other forms of drug discovery has attracted great attention because, according to the World Health Organization, these would be the best sources for obtaining a wide variety of drugs and could benefit a large population. Furthermore, silver nanoparticles, antibodies and photodynamic inactivation have also been used with good results. This article presents a brief review of the literature regarding the epidemiology of Candida species, as well as their pathogenicity and ability to form biofilms, the antifungal activity of natural products and other therapeutic options. © 2013 SGM.
Resumo:
The posterior position in the arches is one of the factors that underlies the poor prognosis of molar teeth (M). It is speculated that M do not benefit from the oral hygiene routine as well as non-molars (NM) do. This study evaluated the response of M and NM to supragingival control during a 6-month period in 25 smokers (S) and 25 never-smokers (NS) with moderate-to-severe periodontitis. One calibrated examiner assessed visible plaque (VPI) and gingival bleeding (GBI) indexes, periodontal probing depth (PPD), bleeding on probing (BOP), and clinical attachment loss (CAL) at days 0 (baseline), 30 and 180. At baseline, M showed significantly higher mean values of VPI (p = 0.017) and PPD (p < 0.001) compared with NM; CAL was also greater in M (p < 0.001) and was affected by smoking (p = 0.007). The reductions obtained for periodontal indicators at day 180 showed similar responses between M and NM. For CAL, M (NS 0.57 ± 0.50; S 0.67 ± 0.64) and NM (NS 0.38 ± 0.23; S 0.50 ± 0.33) reached an almost significant difference (p = 0.05). Smoking did not influence the response to treatment. Multilevel analysis revealed that, only for PDD reductions, the interaction between sites, teeth and patient was significant (p < 0.001). It was concluded that M benefit from an adequate regimen of supragingival biofilm control; therefore, supragingival condition should be considered in the prognosis of molar teeth.
Resumo:
Objective: The recovery of mutans streptococci in saliva and dental biofilm samples depends, in part, on the culture medium used. In this study, we compared (i) the culture media Sucrose-Bacitracin agar (SB-20), Modified SB-20 (SB-20M) and Mitis Salivarius Bacitracin agar (MSB) in the count of colony forming units (cfu) of mutans streptococci and (ii) in the morphological and biochemical differentiation between Streptococcus mutans and Streptococcus sobrinus. Design: Samples of non-stimulated saliva from 20 children were plated on SB-20, SB-20M and MSB, and incubated in microaerophilia at 37 °C for 72 h. Identification of microorganisms was based on analysis of colony morphology under stereomicroscopy. The biochemical identification of colonies was done by biochemical tests using sugar fermentation, resistance to bacitracin and hydrogen peroxide production. Results: There was no significant difference (p > 0.05) in the number of cfu of mutans streptococci recovered on SB-20 and SB-20M agar. Comparing the media, SB-20 and SB-20M yielded a larger number of mutans streptococci colonies (p < 0.05) and were more effective than MSB in the identification of S. sobrinus (p < 0.05), but not of S. mutans (p > 0.05). Conclusion: There was no significant difference between SB-20 and SB-20M culture media in the count of mutans streptococci, demonstrating that the replacement of sucrose by coarse granular cane sugar did not alter the efficacy of the medium. Compared with MSB, SB-20 and SB-20M allowed counting a larger number of mutans streptococci colonies and a more effective morphological identification of S. sobrinus. © 2012 Elsevier Ltd.
Resumo:
The peptide LYS-[TRP6]-Hy-A1 (Lys-a1) is a synthetic derivative of the peptide Hy-A1, initially isolated from the frog species Hypsiboas albopunctatus. According to previous research, it is a molecule with broad antimicrobial activity. The objective of this study was to evaluate the antimicrobial activity of the synthetic peptide Lys-a1 (KIFGAIWPLALGALKNLIK- NH2) on the planktonic and biofilm growth of oral bacteria. The methods used to evaluate antimicrobial activity include the following: determination of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) in microtiter plates for growth in suspension and quantification of biomass by crystal violet staining and counting of colony forming units for biofilm growth. The microorganisms Streptococcus oralis, Streptococcus sanguinis, Streptococcus parasanguinis, Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus were grown in Brain Heart Infusion broth at 37 °C under atmospheric pressure with 10% CO2. The peptide was solubilized in 0.1% acetic acid (v/v) at various concentrations (500-1.9 μg mL-1). Chlorhexidine gluconate 0.12% was used as the positive control, and BHI culture medium was used as the negative control. The tested peptide demonstrated a remarkable antimicrobial effect, inhibiting the planktonic and biofilm growth of all strains tested, even at low concentrations. Thus, the peptide Lys-a1 is an important source for potential antimicrobial agents, especially for the control and prevention of microbial biofilms, which is one of the most important factors in cariogenic processes. © 2012 Elsevier Inc.
Resumo:
A new highly luminescent europium complex with the formula [Eu(TTA) 3(Bpy-Si)], where TTA stands for the thenoyltrifluoroacetone, (C 4H3S)COCH2COCF3, chelating ligand and Bpy-Si, Bpy-CH2NH(CH2)3Si(OEt)3, is an organosilyldipyridine ligand displaying a triethoxysilyl group as a grafting function has been synthesized and fully characterized. This bifunctional complex has been grafted onto the surface of dense silica nanoparticles (NPs) and on mesoporous silica microparticles as well. The covalent bonding of [Eu(TTA)3(Bpy-Si)] inside uniform Stöber silica nanoparticles was also achieved. The general methodology proposed could be applied to any silica matrix, allowed high grafting ratios that overcome chelate release and the tendency to agglomerate. Luminescent silica-based nanoparticles SiO2-[Eu(TTA)3(Bpy-Si)], with a diameter of 28 ± 2 nm, were successfully tested as a luminescent labels for the imaging of Pseudomonas aeruginosa biofilms. They were also functionalized by a specific monoclonal antibody and subsequently employed for the selective imaging of Escherichia coli bacteria. © 2013 American Chemical Society.
Resumo:
Microbial biofilms are responsible for a variety of microbial infections in different parts of the body, such as urinary tract infections, catheter infections, middle-ear infections, gingivitis, caries, periodontitis, orthopedic implants, and so on. The microbial biofilm cells have properties and gene expression patterns distinct from planktonic cells, including phenotypic variations in enzymic activity, cell wall composition and surface structure, which increase the resistance to antibiotics and other antimicrobial treatments. There is consequently an urgent need for new approaches to attack biofilm-associated microorganisms, and antimicrobial photodynamic therapy (aPDT) may be a promising candidate. aPDT involves the combination of a nontoxic dye and low-intensity visible light which, in the presence of oxygen, produces cytotoxic reactive oxygen species. It has been demonstrated that many biofilms are susceptible to aPDT, particularly in dental disease. This review will focus on aspects of aPDT that are designed to increase efficiency against biofilms modalities to enhance penetration of photosensitizer into biofilm, and a combination of aPDT with biofilm-disrupting agents. © 2013 Informa UK Ltd.
Resumo:
Introduction: The ability of staphylococci to produce biofilm is an important virulence mechanism that allows bacteria both to adhere and to live on artificial surfaces and to resist to the host immune factors and antibiotics. Staphylococcal infections have become increasingly difficult to treat due their antibiotic resistance. Therefore, there is a continuous need for new and effective treatment alternatives against staphylococcal infections. The main goal of this study was to test N-acetylcysteine (NAC) and vancomycin alone and in combination against S. epidermidis and S. aureus biofilms. Methods: Biofilms were treated with NAC at minimum inhibitory concentration (MIC) and 10 × MIC concentrations and vancomycin at MIC and peak serum concentrations. Results: The use of NAC 10 × MIC alone showed a significant antibactericidal effect, promoting a 4-5 log10 CFU/ mL reduction in biofilm cells. The combination of NAC 10 × MIC with vancomycin (independently of the concentration used) reduced significantly the number of biofilm cells for all strains evaluated (5-6 log10). Conclusion: N-acetylcysteine associated to vancomycin can be a potential therapeutic strategy in the treatment of infections associated to biofilms of S. epidermidis or S. aureus.
Resumo:
Aim: To evaluate antibiofilm activity against Enterococcus faecalis, pH and solubility of AH Plus, Sealer 26, Epiphany SE, Sealapex, Activ GP, MTA Fillapex (MTA-F) and an experimental MTA-based Sealer (MTA-S). Methodology: Sealer samples were manipulated and stored for 2 or 7 days. Prepared sealers were evaluated by a modified direct contact test (DCT) for 5 h, 10 h or 15 h with biofilm previously induced on bovine dentine for 14 days. In the control group, the biofilm was not exposed to the sealers. The number of colony-forming units (CFU mL-1) in the remaining biofilm was determined. Sealer solubility was assessed by the percentage of mass loss after 15 h of immersion in distilled water. Sealer pH was measured at 5 h, 10 h and 15 h. Statistical analysis was performed using Kruskal-Wallis and Dunn or anova and Tamhane's T2 tests, at 5% significance. Results: At 2 days post-manipulation, the DCT showed that Sealapex and MTA-F were associated with a reduction in the number of bacteria in all 3 contact periods evaluated, compared with the control group (P < 0.05). At 7 days, Sealapex had the greatest antibiofilm action at 10 h and 15 h. Sealapex had the highest pH values 2 and 7 days post-manipulation. Regarding the solubility, at 2 days the highest values were observed for MTA-F, MTA-S, Sealapex and Activ GP (P < 0.05). At 7 days, MTA-S and MTA-F had greater solubility than the other materials (P < 0.05). AH Plus had the lowest solubility for both post-manipulation periods (P < 0.05). Conclusion: Sealapex and MTA-F were associated with a reduction in the number of bacteria in biofilms and had greater solubility. The high solubility and pH may be related to the antibacterial activity of these materials. © 2012 International Endodontic Journal.
Resumo:
Purpose: The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Materials and Methods: Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p < 0.05). Results: C. albicans biofilm formation was significantly influenced by the films (p < 0.00001), reducing the number of cfu, while not affecting the roughness parameters (p > 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Conclusion: Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.
Resumo:
This in vitro study evaluated the effect of photodynamic therapy (PDT) on the multispecies biofilm of Candida albicans, Candida glabrata, and Streptococcus mutans. Standardized fungal and bacterial suspensions were cultivated appropriately for each species and inoculated in 96-well microtiter plates for mix-biofilm formation. After 48 h of incubation, the biofilms were submitted to PDT (P + L+) using Photodithazine® (PDZ) at 100, 150, 175, 200, or 250 mg/mL for 20 min and 37.5 J/cm2 of light-emitting diode (LED) (660 nm). Additional samples were treated only with PDZ (P + L-) or LED (P-L+), or neither (control, P-L-). Afterwards, the biofilms were evaluated by quantification of colonies (CFU/mL), metabolic activity (XTT reduction assay), total biomass (crystal violet staining), and confocal scanning laser microscopy (CSLM). Data were analyzed by one-way ANOVA and Tukey tests (p < 0.05). Compared with the control, PDT promoted a significant reduction in colonies viability of the three species evaluated with 175 and 200 mg/mL of PDZ. PDT also significantly reduced the metabolic activity of the biofilms compared with the control, despite the PDZ concentration. However, no significant difference was found in the total biomass of samples submitted or not to PDT. For all analysis, no significant difference was verified among P-L-, P + L-, and P-L+. CSLM showed a visual increase of dead cells after PDT. PDT-mediated PDZ was effective in reducing the cell viability of multispecies biofilm. © 2013 Springer-Verlag London.
Resumo:
This study evaluated the photodynamic inactivation (PDI) mediated by Photodithazine® (PDZ) against 15 clinical isolates of Candida albicans, Candida glabrata and Candida tropicalis. Each isolate, in planktonic and biofilm form, was exposed to PDI by assessing a range of PDZ concentrations and light emitting diode fluences. Cell survival of the planktonic suspensions was determined by colony forming units (CFU ml-1). The antifungal effects of PDI against biofilms were evaluated by CFU ml-1 and metabolic assay. Data were analyzed by non-parametric tests (α = 0.05). Regardless of the species, PDI promoted a significant viability reduction of planktonic yeasts. The highest reduction in cell viability of the biofilms was equivalent to 0.9 log10 (CFU ml-1) for C. albicans, while 1.4 and 1.5 log10 reductions were obtained for C. tropicalis and C. glabrata, respectively. PDI reduced the metabolic activity of biofilms by 62.1, 76.0, and 76.9% for C. albicans, C. tropicalis, and C. glabrata, respectively. PDZ-mediated PDI promoted significant reduction in the viability of Candida isolates. © 2013 Taylor & Francis.
Resumo:
Listeria monocytogenes, considered as one of the most important foodborne pathogens, is easily found on surfaces, particularly in the form of a biofilm. Biofilms are aggregates of cells that facilitate the persistence of these pathogens in food processing environments conferring resistance to the processes of cleaning and may cause contamination of food during processing, thus, representing a danger to public health. Little is known about the dynamics of the formation and regulation of biofilm production in L.monocytogenes, but several authors reported that the luxS gene may be a precursor in this process. In addition, the product of the inlA gene is responsible for facilitating the entry of the microorganism into epithelial cells that express the receptor E-cadherin, also participates in surface attachment. Thus, 32 strains of L.monocytogenes isolated from different foods (milk and vegetables) and from food processing environments were analyzed for the presence of these genes and their ability to form biofilms on three different surfaces often used in the food industry and retail (polystyrene, glass and stainless steel) at different temperatures (4, 20 and 30°C). All strains had the ilnA gene and 25 out of 32 strains (78.1%) were positive for the presence of the luxS gene, but all strains produced biofilm in at least one of the temperatures and materials tested. This suggests that genes in addition to luxS may participate in this process, but were not the decisive factors for biofilm formation. The bacteria adhered better to hydrophilic surfaces (stainless steel and glass) than to hydrophobic ones (polystyrene), since at 20°C for 24h, 30 (93.8%) and 26 (81.3%) produced biofilm in stainless steel and glass, respectively, and just 2 (6.2%) in polystyrene. The incubation time seemed to be an important factor in the process of biofilm formation, mainly at 35°C for 48h, because the results showed a decrease from 30 (93.8%) to 20 (62.5%) and from 27 (84.4%) to 12 (37.5%), on stainless steel and glass, respectively, although this was not significant (. p=0.3847). We conclude that L.monocytogenes is capable of forming biofilm on different surfaces independent of temperature, but the surface composition may be important factor for a faster development of biofilm. © 2013 Elsevier Ltd.
Resumo:
Pós-graduação em Biociências e Biotecnologia Aplicadas à Farmácia - FCFAR