148 resultados para aerobic wastewater treatment


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of this work is to perform studies of mathematical modeling of the relationship of interaction occurring between microrganisms participants from wastewater treatment processes aimed at understanding, through simulations, such as inter-relationships can affect the performance of such units. The methodology was the implementation in FORTRAN computer language of mathematical models of microbial interactions. The first model addresses the interaction of bacteria-forming flakes and filamentous bacteria in activated sludge systems, which seeks to strike a balance between these bacteria to improve efficiency of the process. Another model is studied the interaction between bacteria and protozoa in activated sludge systems and analyzing the efficiency of the process, observing the changes in daily load. Microbial interactions in anaerobic reactors were dealt a third model, in which there is the mutualistic interaction between acidogenic and methanogenic bacteria. In a fourth and final model was examined the relationship between the bacteria Acinetobacter sp. and Gordonia sp., which are present in activated sludge systems, showing the competitive capacity of Acinetobacter sp. can control the growth of unwanted bacteria.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The treatment of domestic and industrial effluents through Wastewater Treatment Plants (WTPs) generates a residue termed sewage sludge, rich in organic matter, high-volume, occasionally containing pathogens and heavy metals. The sludge generation can minimize the benefits brought by the treatment of sewage, because this residue does not always receive appropriate treatment before final disposal. The disposal is another problem related to sludge. Landfills generally does not have physical space and alternatives such as the use in agriculture requires an intense treatment that could be in many cases operational or economic unfeasible. The objective of this work is the theoretical research about the processes of stabilization of the sludge by anaerobic digestion and the methanogenic activity during the process. Through analysis of each step and contemplating each relevant factor in anaerobic digestion process in order to optimize them, we proposed a theoretical model of reactors capable of stabilize the sludge, reduce its volume and eliminate pathogens. The obtained configuration consists of two anaerobic reactors connected in series. The first one operates in the range mesophilic temperature (35 ° C) and has higher hydraulic retention time (25 days) working primarily in the stabilization of organic matter present in the sludge and producing biogas, whereas the second one operates in the thermophilic range (55 ° C) in order to eliminate pathogens, and to reduce the volume. The hydraulic retention time in the second reactor is lower (10 days). Both mesophilic and thermophilic processes were efficient in what was proposed, promoting the stabilization of organic matter present in the sludge and significant reduction of pathogens. As a final step with the sludge previously digested, it is indicated a final dehydration... (Complete abstract click electronic access below)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents alternatives for waste energy recovery from the sewage of cities. Through a review of the literature it is observed that the technologies studied are usually turbines, microturbines, and engines adapted to the use of biogas. For project design analyzes the technologies found in some sewage treatment plants in Brazil and the world, compared with those found in the literature. With this study it can be concluded that the most used technologies are microturbines and motor generator sets, which are already implemented in some locations in the USA, Europe and even Brazil. It can also be concluded that the energy recovery of waste from sewage can enable design of wastewater treatment plants thereby contributing to improved quality of life

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this work was to develop a numerical method to solve boundary value problems concerning to the use of dispersion model for describing the hydraulic behavior of chemical or biological reactors employed in the wastewater treatment. The numerical method was implemented in FORTRAN language generating a computational program which was applied to solve cases involving reaction kinetics of both integer and fractional orders. The developed method was able to solve the proposed problems evidencing to be a useful tool that provides more accurate design of wastewater treatment reactors

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Water is an essential element for life. The use of this element, to support the community, defines it as water resource. This feature is being misused and degraded by the dumping of highly contaminated effluents. The impoverishment of its quality poses a risk to human consumption. The necessity to manage this resource, treating the wastewater properly, requires the constant improvement of treatment systems. Another need is to adjust the cost of systems to the demands of communities with less financial clout. This study aimed to adapt and understand the systems of wetlands, improving its efficiency, in an attempt to collaborate with the enrichment of this technology. The practical evidence, with lab-scale prototypes, assembled in ETE Piracicamirim with urban sewage effluent contributed to highlight the problems and operating system design. The bibliographic review showed that several studies had effectiveness for treatment. But it was evident the need for better understanding of dimensioning definitions that better attempted to the answers into the project. Moreover, standardization of system conditions for the specific wastewater treatment is an interesting field, identified, for future studies yet contribute to environmental engineering and sanitation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Civil - FEIS

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study aimed to develop, implement and evaluate the performance of a new type of bioreactor for anaerobic treatment of wastewater using different filling materials like trickling filters post-reactor. This bioreactor has mixed characteristics of the UASB reactors and horizontal flow from the point of view of removal of BOD (Biochemical Oxygen Demand) ssed (settled solids), TS (Total Solids), SS (Suspended Solid), SD (Dissolved Solids) and turbidity. The experimental model consists of a bioreactor with a volume of 12 m³, 2/3 filled by fluidized bed and 1/3 for fixed. The fluidized bed is made of polystyrene plates used as a system percolation and compartmentalized trickling filters, where each compartment was filled with a support medium with different characteristics (gravel number 4, plastic rings of polystyrene, PET and HDPE) . In addition, the output of a filter system was installed three entries filled with activated carbon. The bioreactor was installed in private residence in the city of Igarapava-SP (20° 02'40.18"S and 47° 45'01.36" W). The system was highly efficient as the removal of organic contaminant load 92% on average reducing the BOD, a significant result when compared to other anaerobic systems. For the other parameters, the mean reduction was 96% for turbidity, 99% ssed, 67.5% ST, 57% SD and 88% of SS. As for its operation the system was capable of operating in continuous flow without the need for maintenance during the entire period of evaluation and without energy, as it operates taking advantage of the natural slope of the terrain where it is installed. The environmental impacts were minimized due to the preservation of local vegetation allowing the ecosystem to remain unchanged beyond the prototype was completely sealed preventing exhalation of odors and therefore not causing inconvenience to neighboring populations. Given these facts it was concluded that the prototype is shown to be highly feasible deployed as a new alternative for treatment of sewage in rural and urban settings (individual homes, condos, farms, ranches, etc.) Due to ease of design and operability, and sustainability at all stages of execution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)