186 resultados para ZIRCONIUM GRAVIMETRY
Resumo:
This study evaluated the effect of three surface conditioning methods on the microtensile bond strength of resin cement to a glass-infiltrated zirconia-reinforced alumina-based core ceramic. Thirty blocks (5×5×4 mm) of In-Ceram Zirconia ceramics (In-Ceram Zirconia-INC-ZR, VITA) were fabricated according to the manufacturer's instructions and duplicated in resin composite. The specimens were polished and assigned to one of the following three treatment conditions (n=10): (1) Airborne particle abrasion with 110 μm Al2O3 particles + silanization, (2) Silica coating with 110 μm SiOx particles (Rocatec Pre and Plus, 3M ESPE) + silanization, (3) Silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. The ceramic-composite blocks were cemented with the resin cement (Panavia F) and stored at 37 °C in distilled water for 7 days prior to bond tests. The blocks were cut under coolant water to produce bar specimens with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (cross-head speed: 1 mm/min). The mean bond strengths of the specimens of each block were statistically analyzed using ANOVA and Tukey's test (α≤0.05). Silica coating with silanization either using 110 μm SiOx or 30 μm SiOx particles increased the bond strength of the resin cement (24.6±2.7 MPa and 26.7±2.4 MPa, respectively) to the zirconia-based ceramic significantly compared to that of airborne particle abrasion with 110-μm Al2O3 (20.5±3.8 MPa) (ANOVA, P<0.05). Conditioning the INC-ZR ceramic surfaces with silica coating and silanization using either chairside or laboratory devices provided higher bond strengths of the resin cement than with airborne particle abrasion using 110 μm Al2O3. © 2005 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
The protection efficiency against water corrosion of fluorozirconate glass, ZBLAN, dip-coated by nanocrystalline tin oxide film containing the organic molecule Tiron® was investigated by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The chemical bonding structure of the surface region and morphology were studied before and after two water exposure periods of 5 and 30 min. The results of the analysis for the as-grown sample revealed a SnO1.6 phase containing carbon and sulfur, related to Tiron®, and traces of elements related to ZBLAN (Zr, F, Ba). This fact and the clear evidence of the presence of tin oxifluoride specie (SnOxF y) indicates a diffusion of the glass components into the porous coating. After water exposure, the increase of the oxygen concentration accompanied by a strong increase of Zr, F, Ba and Na content is interpreted as filling of the nanopores of the film by glass compounds. The formation of a compact protective layer is supported by the morphological changes observed by AFM. © 2005 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The aim of this study was to evaluate the effect of two surface conditioning methods on the microtensile bond strength of a resin cement to three high-strength core ceramics: high alumina-based (In-Ceram Alumina, Procera AllCeram) and zirconia-reinforced alumina-based (In-Ceram Zirconia) ceramics. Materials and Methods: Ten blocks (5 ×6 × 8 mm) of In-Ceram Alumina (AL), In-Ceram Zirconia (ZR), and Procera (PR) ceramics were fabricated according to each manufacturer's instructions and duplicated in composite. The specimens were assigned to one of the two following treatment conditions: (1) airborne particle abrasion with 110-μm Al2O3 particles + silanization, (2) silica coating with 30 μm SiOx particles (CoJet, 3M ESPE) + silanization. Each ceramic block was duplicated in composite resin (W3D-Master, Wilcos, Petrópolis, RJ, Brazil) using a mold made out of silicon impression material. Composite resin layers were incrementally condensed into the mold to fill up the mold and each layer was light polymerized for 40 s. The composite blocks were bonded to the surface-conditioned ceramic blocks using a resin cement system (Panavia F, Kuraray, Okayama, Japan). One composite resin block was fabricated for each ceramic block. The ceramic-composite was stored at 37°C in distilled water for 7 days prior to bond tests. The blocks were cut under water cooling to produce bar specimens (n = 30) with a bonding area of approximately 0.6 mm2. The bond strength tests were performed in a universal testing machine (crosshead speed: 1 mm/min). Bond strength values were statistically analyzed using two-way ANOVA and Tukey's test (≤ 0.05). Results: Silica coating with silanization increased the bond strength significantly for all three high-strength ceramics (18.5 to 31.2 MPa) compared to that of airborne particle abrasion with 110-μm Al2O3 (12.7-17.3 MPa) (ANOVA, p < 0.05). PR exhibited the lowest bond strengths after both Al2O3 and silica coating (12.7 and 18.5 MPa, respectively). Conclusion: Conditioning the high-strength ceramic surfaces with silica coating and silanization provided higher bond strengths of the resin cement than with airborne particle abrasion with 110-μm Al2O3 and silanization.
Resumo:
Purpose: This study compared the shear bond strength (SBS) to enamel of rest seats made with a glass-ionomer cement (Fuji IX GP Fast), a resin-modified glass-ionomer cement (Fuji II LC), and a composite resin (Z100 MP) under monotonic and cyclic loading. Materials and Methods: Rest seats were built up onto the lingual surfaces of 80 intact human mandibular incisors. Specimens (n=10) were stored in distilled water at 37°C for 30 days and subjected to shear forces in a universal testing machine (0.5 mm/min) until fracture. The SBS values were calculated (MPa) using the bonding area (9.62 mm2) delimited by adhesive tags. A staircase approach was used to determine the SBS fatigue limit of each material. Specimens were submitted to either 10,000 cycles (5 Hz) or until specimen fracture. A minimum of 15 specimens was tested for each material. Scanning electron microscopy was used to examine the mode of failure. Data were statistically analyzed with one-way ANOVA and Tukey HSD tests (α = 0.05). Results: Z100 MP yielded higher (p < 0.05) SBS (12.25 MPa) than Fuji IX GP Fast (7.21 MPa). No differences were found between Fuji II LC (10.29 MPa) and the other two materials (p > 0.05). Fuji II LC (6.54 MPa) and Z100 MP (6.26 MPa) had a similar SBS limit. Fuji IX GP Fast promoted the lowest (p < 0.05) SBS fatigue limit (2.33 MPa). All samples showed cohesive failure patterns. Conclusion: Fatigue testing can provide a better means of estimating the performance of rest seats made with dental restoratives.
Resumo:
This study aimed to evaluate the effect of surface glazing and polishing of yttrium-stabilized tetragonal zirconia polycrystal ceramic on early dental biofilm formation, as well as the effect of brushing on the removal of adhered bacteria. Two subjects used oral appliances with polished and glazed samples fixed to the right and left sides. After 20 minutes, 1 hour, and 6 hours, the subjects manually brushed the samples on the right side. The samples were analyzed using scanning electron microscopy. Granular material was verified on the samples, especially on irregular surfaces. After 1 hour, there was no significant difference between glazed and polished surfaces in terms of bacterial presence. However, glazed surfaces tended to accumulate more biofilm, and brushing did not completely remove the biofilm. Polished surfaces seem to present a lower tendency for biofilm formation. Int J Prosthodont 2007;20:419-422.
Resumo:
This paper presents the results of a geophysical study carried out in northeastern São Paulo State and southwestern Minas Gerais State over an area 80 km wide and 97.5 km long in SE Brazil. The Bouguer anomaly map, and geological and structural data allowed to identify three different gravity domains - crustal blocks limited by major discontinuities -related to the structural pattern of the area. These discontinuities were interpreted as geosuture zones underlying the Paraná Basin sediments which have extensions in the Pre-cambrian Basement. The crustal discontinuities named Alterosa and Ribeirão Preto may be seen as A - type collision sutures in a triple junction arramgement. Two prominent linear anomalies are recognized in the Bouguer anomaly map, as well as the limit between the Brasilia and São Paulo crustal blocks or paleoplates. The Alterosa suture zone trends NW-SE while the Ribeirão Preto suture has a NE-SW direction. The Bouguer anomaly map provides subsidies and information on new concepts and theories leading to the refinement of tectonic models.
Resumo:
Objective: To evaluate the marginal microleakage in enamel and dentin/cementum walls in preparations with a high C-factor, using 3 resin composite insertion techniques. The null hypothesis was that there is no difference among the 3 resin composite insertion techniques. Method and Materials: Standardized Class 5 cavities were prepared in the lingual and buccal aspects of 30 caries-free, extracted third molars. The prepared teeth were randomly assigned to 3 groups: (1) oblique incremental placement technique, (2) horizontal incremental placement technique, and (3) bulk insertion (single increment). The preparations were restored with a 1-bottle adhesive (Single Bond, 3M ESPE) and microhybrid resin composite (Z100, 3M ESPE). Specimens were isolated with nail varnish except for a 2-mm-wide rim around the restoration and thermocycled (1,000 thermal cycles, 5°C/55°C; 30-second dwell time). The specimens were immersed in an aqueous solution of 50 wt% silver nitrate for 24 hours, followed by 8 hours in a photo-developing solution and evaluated for microleakage using an ordinal scale of 0 to 4. The microleakage scores obtained from occlusal and gingival walls were analyzed with Wilcoxon and Kruskal-Wallis nonparametric tests. Results: The null hypothesis was accepted. The horizontal incremental placement technique, the oblique incremental technique, and bulk insertion resulted in statistically similar enamel and dentin microleakage scores. Conclusion: Neither the incremental techniques nor the bulk placement technique were capable of eliminating the marginal microleakage in preparations with a high C-factor.
Resumo:
We report the use of organic-inorganic sol-gel derived poly(oxyehylene)/ siloxane hybrid doped with methacrylic acid modified zirconium (IV) n-propoxide for the fabrication of low cost waveguides trough direct UV laser writing. The organic-inorganic hybrids were processed as monoliths with size and shape control. The effective guiding region was identified and the number of modes was estimated via mode field analyses. A grating was successfully superimposed on the channel and the respective reflection spectrum was measured, enabling the determination of the guiding region dimension, the calculation of the effective refractive index of the guided mode. © 2007 IEEE.
Resumo:
A new approach based on a N-a cluster photoabsorption model is proposed for the understanding of the puzzling steady increase behavior of the 90Zr (e, α) yield measured at the National Bureau of Standards (NBS) within the Giant Dipole Resonance and quasideuteron energy range. The calculation takes into account the pre-equilibrium emissions of protons, neutrons and alpha particles in the framework of an extended version of the multicollisional intranuclear cascade model (MCMC). Another Monte Carlo based algorithm describes the statistical decay of the compound nucleus in terms of the competition between particle evaporation (p, n, d, α, 3He and t) and nuclear fission. The results reproduce quite successfully the 90Zr (e,α) yield, suggesting that emissions of a particles are essential for the interpretation of the exotic increase of the cross sections.
Resumo:
This study evaluated the effect of mechanical cycling on the bond strength of zirconia posts to root dentin. Thirty single-rooted human teeth were transversally sectioned to a length of 16 mm. The canal preparation was performed with zirconia post system drills (CosmoPost, Ivoclar) to a depth of 12 mm. For post cementation, the canals were treated with total-etch, 3-steps All-Bond 2 (Bisco), and the posts were cemented with Duolink dual resin cement (Bisco). Three groups were formed (n = 10): G1 - control, no mechanical cycling; G2 - 20,000 mechanical cycles; G3 - 2,000,000 mechanical cycles. A 1.6-mm-thick punch induced loads of 50 N, at a 45° angle to the long axis of the specimens and at a frequency of 8 Hz directly on the posts. To evaluate the bond strengths, the specimens were sectioned perpendicular to the long axis of the teeth, generating 2-mm-thick slices, approximately (5 sections per teeth), which were subjected to the push-out test in a universal testing machine at a 1 mm/min crosshead speed. The push-out bond strength was affected by the mechanical cycling (1-way ANOVA, p = .0001). The results of the control group (7.7 ± 1.3 MPa) were statistically higher than those of G2 (3.9 ± 2.2 MPa) and G3 (3.3 ± 2.3 MPa). It was concluded that the mechanical cycling damaged the bond strength of zirconia posts to root dentin.
Resumo:
Barium zirconate titanate Ba(Ti0.90Zr0.10)O3 ceramics doped with WO
Resumo:
This study proposes a pH-cycling model for verifying the dose-response relationship in fluoride-releasing materials on remineralization in vitro. Sixty bovine enamel blocks were selected for the surface microhardness test (SMH 1). Artificial caries lesions were induced and surface microhardness test (SMH 2) was performed. Forty-eight specimens were prepared with Z 100, Fluroshield, Vitremer and Vitremer 1/4 diluted - powder/liquid, and subjected to a pH-cycling model to promote remineralization. After pH-cycling, final surface microhardness (SMH 3) was assessed to calculate percent recovery of surface microhardness (%SMH R). Fluoride present in enamel (μg F/mm 3) and in the pH-cycling solutions (μg F) was measured. Cross-sectional microhardness was used to calculate mineral content (ΔZ). There was no significant difference between Z 100 and control groups on analysis performed on - %SMH R, ΔZ, μ F and μ F/mm 3 (p>0.05). Results showed a positive correlation between %SMH R and μg F/mm 3 (r=0.9770; p=0.004), %SMH R and μg F (r=0.9939; p=0.0000001), DZ and μg F/mm 3 (r=0.9853; p=0.0002), ΔZ and μg F (r=0.9975; p=0.0000001) and between μg F/mm 3 and μg F (r=0.9819; p=0.001). The pH-cycling model proposed was able to verify in vitro dose-response relationship of fluoride-releasing materials on remineralization.
Resumo:
For microwave applications, including mobile and satellite communications, ceramic resonators should have a high dielectric constant, low dielectric losses, and high frequency stability. In this sense, TiO2-ZrO 2 ceramics have been investigated as a function of sintering behavior, phase composition, and microstructure. The ceramics were densified reaching a value of about 86% of theoretical density at 1400°C sintering temperature. The ceramics are prepared by mixing raw materials with the following TiO2-ZrO2 weight % ratio: 100 to 0, 90 to 10, and 80 to 20, respectively. The measured dielectric constants are between 79 and 88 values, while the quality factor due to dielectric losses are between 2820 and 5170. These results point out the influence of Ti/Zr ratio on controlling the dielectric properties. © (2010) Trans Tech Publications.
Resumo:
Dielectric ceramics have been widely investigated and used for microwave applications such as resonators and filters. The present study deals with the influence of sintering temperature on microwave dielectric properties of TiO2 ceramics with 10, 20, and 30 wt% ZrO2. Three compositions have been developed through mixing procedures and then tested for each sintering temperature: 1500 and 1400°C. X-ray diffraction and scanning electron microscopy are carried out aiming to explain the ceramic behavior of each sample. The dielectric constants of different ceramics for both temperatures varied from 85.4 to 62.6, while their quality factor due to dielectric losses varied from 3110 to 1630. The Q decrease is attributed to the non uniform grain growth and to the obtained crystalline phases. The best microwave parameters were obtained for the ceramics sintered at 1400°C, which can be applied in microwave circuits as dielectric resonators. © (2010) Trans Tech Publications.
Resumo:
The present study suggests the use of high energy ball milling to mix (to dope) the phase MgB2 with the AlB2 crystalline structure compound, ZrB2, with the same C32 hexagonal structure than MgB 2, in different concentrations, enabling the maintenance of the crystalline phase structures practically unaffected and the efficient mixture with the dopant. The high energy ball milling was performed with different ball-to-powder ratios. The analysis of the transformation and formation of phases was accomplished by X-ray diffractometry (XRD), using the Rietveld method, and scanning electron microscopy. As the high energy ball milling reduced the crystallinity of the milled compounds, also reducing the size of the particles, the XRD analysis were influenced, and they could be used as comparative and control method of the milling. Aiming the recovery of crystallinity, homogenization and final phase formation, heat treatments were performed, enabling that crystalline phases, changed during milling, could be obtained again in the final product. © (2010) Trans Tech Publications.