100 resultados para Vocal loading
Resumo:
Vocal warm-ups are essential for the technical training of the singer, for good speech and performance, as well as essential for good vocal health and a long-lasting career. Objective: To analyze the theory and practice of the vocal warm-up in classical singing, from the perspective of different professionals in the voice field including: teachers, speech therapists and singers. Method: descriptive search, quantitative in nature, cross-sectional, with a questionnaire for voice teachers, singers and audiologists. The sample consisted of 165 subjects: 86 voice teachers, 64 speech pathologists, and 15 singers. Results: Teachers of Singing (97.7 %), singers (95.3 %) and students (93.3 %) use the vocal warm-up. Conclusion: From the results we can infer that most of the professionals surveyed point to the importance of the implementation of the vocal warm-up before a performance, and the strategy used by most voice instructors, speech therapists and singers is vocalization, i.e. aesthetic warm-up.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dysphonia is more prevalent in teachers than among the general population. The objective of this study was to analyze clinical, vocal, and videolaryngoscopical aspects in dysphonic teachers. Ninety dysphonic teachers were inquired about their voice, comorbidities, and work conditions. They underwent vocal auditory-perceptual evaluation (maximum phonation time and GRBASI scale), acoustic voice analysis, and videolaryngoscopy. The results were compared with a control group consisting of 90 dysphonic nonteachers, of similar gender and ages, and with professional activities excluding teaching and singing. In both groups, there were 85 women and five men (age range 31-50 years). In the controls, the majority of subjects worked in domestic activities, whereas the majority of teachers worked in primary (42.8%) and secondary school (37.7%). Teachers and controls reported, respectively: vocal abuse (76.7%; 37.8%), weekly hours of work between 21 and 40 years (72.2%; 80%), under 10 years of practice (36%; 23%), absenteeism (23%; 0%), sinonasal (66%; 20%) and gastroesophageal symptoms (44%; 22%), hoarseness (82%; 78%), throat clearing (70%; 62%), and phonatory effort (72%; 52%). In both groups, there were decreased values of maximum phonation time, impairment of the G parameter in the GRBASI scale (82%), decrease of F0 and increase of the rest of acoustic parameters. Nodules and laryngopharyngeal reflux were predominant in teachers; laryngopharyngeal reflux, polyps, and sulcus vocalis predominated in the controls. Vocal symptoms, comorbidities, and absenteeism were predominant among teachers. The vocal analyses were similar in both groups. Nodules and laryngopharyngeal reflux were predominant among teachers, whereas polyps, laryngopharyngeal reflux, and sulcus were predominant among controls.
Resumo:
The aim of this study was to evaluate the survival of single dental implants subjected to immediate function. Twelve patients with edentulous areas in the posterior mandible were included in the study. All received at least one regular platform dental implant (3.75mm×11mm or 3.75mm×13mm). Clinical and radiographic parameters were evaluated. The survival rate after 12 months was 83.3%. The implants showed no clinical mobility, had implant stability quotient values (ISQ; Osstell) around 70, bone loss of up to 2mm, and a probing depth of ≤3mm. Although the posterior mandible is an area in which the immediate loading of dental implants should be performed with caution, this treatment presented a good success rate in the present study sample.
Resumo:
Stair ascent is an activity that exacerbates symptoms of individuals with patellofemoral pain. The discomfort associated with this activity usually results in gait modification such as reduced knee flexion in an attempt to reduce pain. Although such compensatory strategy is a logical approach to decrease pain, it also reduces the normal active shock absorption increasing loading rates and may lead to deleterious and degenerative changes of the knee joint. Thus, the aims of this study were (i) to investigate whether there is reduced knee flexion in adults with PFP compared to healthy controls; and (ii) to analyze loading rates in these subjects, during stair climbing. Twenty-nine individuals with patellofemoral pain and twenty-five control individuals (18-30years) participated in this study. Each subject underwent three-dimensional kinematic and kinetic analyses during stair climbing on two separate days. Between-groups analyses of variance were performed to identify differences in peak knee flexion and loading rates. Intraclass correlation coefficient was performed to verify the reliability of the variables. On both days, the patellofemoral pain group demonstrated significantly reduced peak knee flexion and increased loading rates. In addition, the two variables obtained high to very high reliability. Reduced knee flexion during stair climbing as a strategy to avoid anterior knee pain does not seem to be healthy for lower limb mechanical distributions. Repeated loading at higher loading rates may be damaging to lower limb joints.
Influence of morphological variables in photoelastic models with implants submitted to axial loading
Resumo:
Purpose: This study used 12 photoelastics models with different height and thickness to evaluate if the axial loading of 100N on implants changes the morphology of the photoelastic reflection. Methods: For the photoelastic analysis, the models were placed in a reflection polariscope for observation of the isochromatic fringes patterns. The formation of these fringes resulted from an axial load of 100N applied to the midpoint of the healing abutment attached to the implant with 10.0mm x 3.75mm (Conexão, Sistemas de Próteses, Brazil). The tension in each photoelastic model was monitored, photographed and observed using the software Phothoshop 7.0. For qualitative analysis, the area under the implant apex was measured including the green band of the second order fringe of each model using the software Image Tool. After comparison of the areas, the performance generated by each specimen was defined regarding the axial loading. Results: There were alterations in area with different height and thickness of the photoelastic models. It was observed that the group III (30mm in height) presented the smallest area. Conclusion: There was variation in the size of the areas analyzed for different height and thickness of the models and the morphology of the replica may directly influence the result in researches with photoelastic models.
Resumo:
Purpose: The aim of this study was to assess the contributions of some prosthetic parameters such as crown-to-implant (C/I) ratio, retention system, restorative material, and occlusal loading on stress concentrations within a single posterior crown supported by a short implant. Materials and Methods: Computer-aided design software was used to create 32 finite element models of an atrophic posterior partially edentulous mandible with a single external-hexagon implant (5 mm wide × 7 mm long) in the first molar region. Finite element analysis software with a convergence analysis of 5% to mesh refinement was used to evaluate the effects of C/I ratio (1:1; 1.5:1; 2:1, or 2.5:1), prosthetic retention system (cemented or screwed), and restorative material (metal-ceramic or all ceramic). The crowns were loaded with simulated normal or traumatic occlusal forces. The maximum principal stress (σmax) for cortical and cancellous bone and von Mises stress (σvM) for the implant and abutment screw were computed and analyzed. The percent contribution of each variable to the stress concentration was calculated from the sum of squares analysis. Results: Traumatic occlusion and a high C/I ratio increased stress concentrations. The C/I ratio was responsible for 11.45% of the total stress in the cortical bone, whereas occlusal loading contributed 70.92% to the total stress in the implant. The retention system contributed 0.91% of the total stress in the cortical bone. The restorative material was responsible for only 0.09% of the total stress in the cancellous bone. Conclusion: Occlusal loading was the most important stress concentration factor in the finite element model of a single posterior crown supported by a short implant.
Resumo:
PURPOSE: In view of reports in the literature on the benefits achieved with the use of platform switching, described as the use of an implant with a larger diameter than the abutment diameter, the goal being to prevent the (previously) normal bone loss down to the first thread that occurs around most implants, thus enhancing soft tissue aesthetics and stability and the need for implant inclination due to bone anatomy in some cases, the aim of this study was to evaluate bone stress distribution on peri-implant bone, by using three-dimensional finite element analysis to simulate the influence of implants with different abutment angulations (0 and 15 degrees) in platform switching. METHODS: Four mathematical models of an implant-supported central incisor were created with varying abutment angulations: straight abutment (S1 and S2) and angulated abutment at 15 degrees (A1 and A2), submitted to 2 loading conditions (100 N): S1 and A1-oblique loading (45 degrees) and S2 and A2-axial loading, parallel to the long axis of the implant. Maximum (σmax) and minimum (σmin) principal stress values were obtained for cortical and trabecular bone. RESULTS: Models S1 and A1 showed higher σmax in cortical and trabecular bone when compared with S2 and A2. The highest σmax values (in MPa) in the cortical bone were found in S1 (28.5), followed by A1 (25.7), S2 (11.6), and A2 (5.15). For the trabecular bone, the highest σmax values were found in S1 (7.53), followed by A1 (2.87), S2 (2.85), and A2 (1.47). CONCLUSIONS: Implants with straight abutments generated the highest stress values in bone. In addition, this effect was potentiated when the load was applied obliquely.
Resumo:
The Cone Loading Test (CLT) consists of the execution of a load test on the piezocone probe in conjunction with the CPT test. The CLT yields the modulus ECLT, a parameter that can be used in the estimative of foundation settlement. It is also presented here the interpretation and the process to determine ECLT values from the stress-displacement curves obtained from cone loading tests. Several CLT tests were conducted at the experimental research site of São Paulo State University, Bauru-SP-Brazil. The geotechnical profile at the studied site is a brown to bright red slightly clayey fine sand, a tropical soil common to this region which is lateritic, unsaturated and collapsible. The results of CLT tests satisfactorily represent the behavior of the investigated soil. The penetrometric modulus ECLT for each depth was calculated considering the elastic behavior in the initial linear segment of the soil stress-strain curve. The ECLT moduli obtained for the various tests were compared to moduli obtained from PMT and DMT test results performed at same studied site. The shear modulus degradation curves obtained from the CLT tests are also presented. The comparison to PMT and DMT results indicates the CLT test is a viable complementary test to the CPT in the quest for better understanding stress-strain behavior of soils. Further, the CLT test provides a graphic visualization of the degradation of the shear modulus with increasing levels of strain. As a hybrid geotechnical test, CPT+CLT can be valuable in the investigation of non-conventional collapsible soils, whose literature lack reference parameters for the prediction of settlement in the design of foundations.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)