92 resultados para Ulisses


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study had as objectives to verify the effect of rainfastness of different flutriafol formulations, in laboratory conditions, applied on soybean plants with and without the oil adjuvant in the spray solution, as well as to verify the influence of the oil on the droplet spectrum. The experiment considered ten spray solutions related to five treatments containing flutriafol (four formulations of flutriafol and a flutriafol mixture with tebuconazole), all applied with and without mineral oil. Particles size analysis were based on the determination of the droplet spectrum, medium volumetric diameter and the amount of droplets below 100 μm. All the solutions were sprayed with Teejet XR 11001 (fine droplets). Droplet spectrum was determined in a direct way by diffraction of laser (Malvern Mastersizer S®, version 2.15). Confidence interval at 90% degree was used to compare the mean data. The results showed that the addition of mineral oil in the solutions provided tendencies of larger medium volumetric diameter, smaller amount of droplets below than 100 µm and better uniformity of the droplet spectrum. All of the solutions with the addition of mineral oil presented larger adhesion and/or absorption of the fungicide on the plants in comparison with the solutions without oil. The increase of the time between the application and the rain, caused reduction of the fungicide removal, independently of the rain intensity. The increase of the amount of rain didn't change the relative behavior among the solutions; however, this larger amount of rain caused larger fungicide removal along the time. It was observed significant removal of flutriafol by the rain up to 48 hours after the spray application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The application of pesticides is one of the most important steps in the agricultural production process. The spray volume can directly affect application success, and this parameter is directly dependent on the displacement speed of the sprayer. In conventional systems, the operator has to maintain a constant speed to ensure uniform application along the tracks. In order to improve over application quality and preserve levels of precision for applied doses; the use of electronic flow control systems allows for automatic adjustment of volume applied over the area when there is a change in velocity during application. The objective of this research was to study the response times of a flow controller with DGPS for aerial application subjected to variations of velocity in laboratory simulated flight conditions. For this purpose, a bench test has been developed including software for simulating DGPS signals, which was used to simulate different flight speeds and conditions. The results showed the average response time from the flow controller to a change in velocity to be between 6 and 20 seconds. Variations in total flow and the controller setting had a significant influence on response time with situations where there was interaction between the factors being evaluated. There was a tendency for better response times using a constant setting for the control algorithm other than that specified by the manufacturer. The flow controller presented an average error rates below 2% in all evaluated operating conditions, providing satisfactory accuracy in determining the output of product in different test situations.