124 resultados para Time domain


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work presents a strategy to control nonlinear responses of aeroelastic systems with control surface freeplay. The proposed methodology is developed for the three degrees of freedom typical section airfoil considering aerodynamic forces from Theodorsen's theory. The mathematical model is written in the state space representation using rational function approximation to write the aerodynamic forces in time domain. The control system is designed using the fuzzy Takagi-Sugeno modeling to compute a feedback control gain. It useds Lyapunov's stability function and linear matrix inequalities (LMIs) to solve a convex optimization problem. Time simulations with different initial conditions are performed using a modified Runge-Kutta algorithm to compare the system with and without control forces. It is shown that this approach can compute linear control gain able to stabilize aeroelastic systems with discontinuous nonlinearities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The second-order differential equations that describe the polyphase transmission line are difficult to solve due to the mutual coupling among them and the fact that the parameters are distributed along their length. A method for the analysis of polyphase systems is the technique that decouples their phases. Thus, a system that has n phases coupled can be represented by n decoupled single-phase systems which are mathematically identical to the original system. Once obtained the n-phase circuit, it's possible to calculate the voltages and currents at any point on the line using computational methods. The Universal Line Model (ULM) transforms the differential equations in the time domain to algebraic equations in the frequency domain, solve them and obtain the solution in the frequency domain using the inverse Laplace transform. This work will analyze the method of modal decomposition in a three-phase transmission line for the evaluation of voltages and currents of the line during the energizing process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: We evaluated the effects of the PCM on the fractal analysis of the HRV in healthy women Method: We evaluated healthy women between 18 and 30 years old. HRV was analyzed in the time (SDNN, RMSSD, NN50 and pNN50) and frequency (LF, HF and LF/HF ratio) domains as well as short and long-term fractal exponents (alpha-1 and alpha-2) of the detrended fluctuation analysis (DFA). HRV was recorded at rest for ten minutes at seated rest and then the women quickly stood up from a seated position in up to three seconds and remained standing for 15 minutes. HRV was recorded at the following time: rest, 0–5 min, 5–10 min and 10–15 min during standing. Results: We observed decrease (p < 0.05) in the time-domain indices of HRV between seated and 10–15 minutes after the volunteer stood up. The LF (ms2) and HF (ms2) indices were also reduced (p < 0.05) at 10–15 minutes after the volunteer stood up compared to seated while the LF (nu) was increased at 5–10 min and 10–15 min (p < 0.05). The short-term alpha-1 exponent was increased (p < 0.05) at all moments investigated compared to seated. Increase in the properties of short-term fractal correlations of heart rate dynamics accompanied by a decrease in the parasympathetic modulation and global HRV was observed in response to the postural change maneuver. Conclusion: We suggest that fractal analysis of HRV is more sensitive than frequency and time-domain analysis of HRV during the postural change maneuver.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigated the acute effects of musical auditory stimulation on cardiac autonomic responses to a mental task in 28 healthy men (18–22 years old). In the control protocol (no music), the volunteers remained at seated rest for 10 min and the test was applied for five minutes. After the end of test the subjects remained seated for five more minutes. In the music protocol, the volunteers remained at seated rest for 10 min, then were exposed to music for 10 min; the test was then applied over five minutes, and the subjects remained seated for five more minutes after the test. In the control and music protocols the time domain and frequency domain indices of heart rate variability remained unchanged before, during and after the test. We found that musical auditory stimulation with baroque music did not influence cardiac autonomic responses to the mental task.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

INTRODUCTION: We aimed to evaluate the effects of musical auditory stimulation on cardiac autonomic regulation in subjects who enjoy and who do not enjoy the music. METHOD: The study was performed in young women (18-27 years old) divided in two groups (1) volunteers who enjoyed the music and (2) volunteers who did not enjoy the music. Linear indices of heart rate variability were analyzed in the time domain. The subjects were exposed to a musical piece (Pachelbel: Canon in D Major) during 10 minutes. Heart rate variability was analyzed at rest with no music and during musical auditory stimulation. RESULTS: In the group that enjoyed the music the standard deviation of normal-to-normal R-R intervals (SDNN) was significantly reduced during exposure to musical auditory stimulation. We found no significant changes for the other linear indices. The group composed of women who did not enjoy the music did not present significant cardiac autonomic responses during exposure to musical auditory stimulation. CONCLUSION: Women who enjoyed the music presented a significant cardiac autonomic response consisting of a reduction in heart rate variability induced by the musical auditory stimulation. Those who did not enjoy the musical piece presented no such response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Flexible poles are tools used to provide rapid eccentric and concentric muscle contractions. It lacks in the literature studies that analyze acute cardiovascular responses in different exercises performed with this instrument. It was investigated the acute effects of exercise with flexible poles on heart period in healthy women. Methods: The study was performed on 32 women between 18 and 25 years old. It was evaluated the heart rate variability (HRV) in the time (SDNN, RMSSD and pNN50) and frequency domain (HF, LF and LF/HF ratio). The subjects remained at rest for 10 minutes. After the rest period, the volunteers performed the exercises with the flexible poles. Immediately after the exercise protocol, the volunteers remained seated at rest for 60 minutes and HRV were analyzed. Results: It was observed no significance changes in the time domain (SDNN: p = 0.14; RMSSD: p = 0.8 and pNN50: p = 0.86) and frequency domain indices (LF (nu): 0.4; LF (ms2): p = 0.34; HF (nu): p = 0.4; HF (ms2): p = 0.8 and LF/HF ratio: p = 0.3) between before and after single bout of exercise with flexible pole. Conclusion: A single bout of exercise with flexible pole did not significantly change cardiac autonomic regulation in healthy women.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new methodology to analyze aeroelastic stability in a continuous range of flight envelope with varying parameter of velocity and altitude. The focus of the paper is to demonstrate that linear matrix inequalities can be used to evaluate the aeroelastic stability in a region of flight envelope instead of a single point, like classical methods. The proposed methodology can also be used to study if a system remains stable during an arbitrary motion from one point to another in the flight envelope, i.e., when the problem becomes time-variant. The main idea is to represent the system as a polytopic differential inclusion system using rational function approximation to write the model in time domain. The theory is outlined and simulations are carried out on the benchmark AGARD 445.6 wing to demonstrate the method. The classical pk-method is used for comparing results and validating the approach. It is shown that this method is efficient to identify stability regions in the flight envelope. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classical procedures for model updating in non-linear mechanical systems based on vibration data can fail because the common linear metrics are not sensitive for non-linear behavior caused by gaps, backlash, bolts, joints, materials, etc. Several strategies were proposed in the literature in order to allow a correct representative model of non-linear structures. The present paper evaluates the performance of two approaches based on different objective functions. The first one is a time domain methodology based on the proper orthogonal decomposition constructed from the output time histories. The second approach uses objective functions with multiples convolutions described by the first and second order discrete-time Volterra kernels. In order to discuss the results, a benchmark of a clamped-clamped beam with an pre-applied static load is simulated and updated using proper orthogonal decomposition and Volterra Series. The comparisons and discussions of the results show the practical applicability and drawbacks of both approaches.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS