268 resultados para Three Body Problem
Resumo:
The effects of trimer continuum resonances are considered in the three-body recombination rate of a Bose system at finite energies for large and negative two-body scattering lengths (a). The thermal average of the rate allows to apply our formula to Bose gases at ultra-low temperatures. We found a good quantitative description of the experimental three-body recombination length of cesium atoms to deeply bound molecules up to 500 nK. Consistent with the experimental data, the increase of the temperature moves the resonance peak of the three-body recombination rate to lower values of vertical bar a vertical bar exhibiting a saturation behavior. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
We show that a scaling limit approach, previously applied in three-body low-energy nuclear physics, is realized for the first excited state of He-4 trimer. The present result suggests that such approach has a wider application.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper considers the dynamics of two planets, as the planets B and C of the pulsar PSR B1257+12, near a 3/2 mean-motion resonance. A two-degrees-of-freedom model, in the framework of the general three-body planar problem, is used and the solutions are analyzed through surfaces of section and Fourier techniques in the full phase space of the system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The dynamics of the restricted three-body Earth-Moon-particle problem predicts the existence of direct periodic orbits around the Lagrangian equilibrium point L1. From these orbits, we derive a set of trajectories that form links between the Earth and the Moon and are capable of performing transfers between terrestrial and lunar orbits, in addition to defining an escape route from the Earth-Moon system. When we consider a more complex and realistic dynamical system - the four-body Sun-Earth-Moon-particle (probe) problem - the trajectories have an expressive gain of inclination when they penetrate in the lunar influence sphere, thus allowing the insertion of probes into low-altitude lunar orbits with high inclinations, including polar orbits. In this study, we present these links and investigate some possibilities for performing an Earth-Moon transfer based on these trajectories. (C) 2007 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
The lunar sphere of influence, whose radius is some 66,300 km, has regions of stable orbits around the Moon and also regions that contain trajectories which, after spending some time around the Moon, escape and are later recaptured by lunar gravity. Both the escape and the capture occur along the Lagrangian equilibrium points L1 and L2. In this study, we mapped out the region of lunar influence considering the restricted three-body Earth-Moon-particle problem and the four-body Sun-Earth-Moon-particle (probe) problem. We identified the stable trajectories, and the escape and capture trajectories through the L I and L2 in plots of the eccentricity versus the semi-major axis as a function of the time that the energy of the osculating lunar trajectory in the two-body Moon-particle problem remains negative. We also investigated the properties of these routes, giving special attention to the fact that they supply a natural mechanism for performing low-energy transfers between the Earth and the Moon, and can thus be useful on a great number of future missions. (C) 2007 Published by Elsevier Ltd on behalf of COSPAR.
Resumo:
A system constituted of three bosons interacting via two-body separable potentials with fixed two-boson binding is known to lead to bound-state collapse in the case where the potential parameters allow two-boson S-matrix poles close to (resonance) and on (continuum bound state) the real momentum axis. The collapse is shown to be accompanied by an increase in the average kinetic energy of the two-body bound state, which signals a decrease in the range of the two-body interaction for fixed two-body binding. The collapse is claimed to be a manifestation of the well-known Thomas effect which leads to a collapse of the three-body system when the range of the two-body interaction goes to zero for a fixed two-body binding.
Resumo:
The original model of Das et al. is modified in extending the electron-ion interaction on a three-body forces and including the crystal equilibrium condition to reduce one independent parameter. We studied the phonon dispersion relations along the three principal symmetry directions i.e. [xi, 0, 0], [xi, xi, 0] and [xi, xi, xi] and theta-T curves of alkali metals, Na, K, Rb, Cs and Li. There is close agreement between the computed results and the experimental observations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The problem of escape/capture is encountered in many problems of the celestial mechanics -the capture of the giants planets irregular satellites, comets capture by Jupiter, and also orbital transfer between two celestial bodies as Earth and Moon. To study these problems we introduce an approach which is based on the numerical integration of a grid of initial conditions. The two-body energy of the particle relative to a celestial body defines the escape/capture. The trajectories are integrated into the past from initial conditions with negative two-body energy. The energy change from negative to positive is considered as an escape. By reversing the time, this escape turns into a capture. Using this technique we can understand many characteristics of the problem, as the maximum capture time, stable regions where the particles cannot escape from, and others. The advantage of this kind of approach is that it can be used out of plane (that is, for any inclination), and with perturbations in the dynamics of the n-body problem. © 2005 International Astronomical Union.
Resumo:
The homogeneous Lippmann-Schwinger integral equation is solved in momentum space by using confining potentials. Since the confining potentials are unbounded at large distances, they lead to a singularity at small momentum. In order to remove the singularity of the kernel of the integral equation, a regularized form of the potentials is used. As an application of the method, the mass spectra of heavy quarkonia, mesons consisting from heavy quark and antiquark (Υ(bb̄), ψ(cc̄)), are calculated for linear and quadratic confining potentials. The results are in good agreement with configuration space and experimental results. © 2010 American Institute of Physics.
Resumo:
The fixed-slope correlation between tetramer and trimer binding energies, observed by Tjon in the context of nuclear physics, is mainly a manifestation of the dominance of the two-nucleon force in the nuclear potential, which makes the four-body scale on the order of the three-body one. In a more general four-boson case, the correlation between tetramer and trimer binding energies has a non-fixed slope, which expresses the dependence on the new scale. The associated scaling function generates a family of Tjon lines. This conclusion relies on a recent study with weakly-bound four identical bosons, within a renormalized zero-range Faddeev-Yakubovsky formalism. © 2012 Springer-Verlag.
Resumo:
We solve the three-body bound-state problem in three dimensions for mass imbalanced systems of two identical bosons and a third particle in the universal limit where the interactions are assumed to be of zero range. The system displays the Efimov effect and we use the momentum-space wave equation to derive formulas for the scaling factor of the Efimov spectrum for any mass ratio assuming either that two or three of the two-body subsystems have a bound state at zero energy. We consider the single-particle momentum distribution analytically and numerically and analyze the tail of the momentum distribution to obtain the three-body contact parameter. Our findings demonstrate that the functional form of the three-body contact term depends on the mass ratio, and we obtain an analytic expression for this behavior. To exemplify our results, we consider mixtures of lithium with either two caesium or rubidium atoms which are systems of current experimental interest. © 2013 American Physical Society.