132 resultados para Soil acidity.
Resumo:
Pós-graduação em Agronomia (Horticultura) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Pós-graduação em Agronomia - FEIS
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Among the edaphic factors, those related to acidity are the ones that affect productivity, especially in tropical regions. For culture the Annonaceae, no research results that indicate the proper base saturation, nor the determination of doses, times, application methods and sources of nutrients for orchards Annonaceae in training and production in order to promote sustainability and higher yields. Given the importance and potential of commercial exploitation of Annonaceae in Brazil and, considering the limited available scientific information on liming, fertilization and nutrition of fruit plants of this family, some research has to be carried out urgently due to the effects of nutrients on productivity, fruit quality, post-harvest, tolerance to pests and diseases, etc.
Resumo:
The efficiency of sources used for soil acidity correction depends on reactivity rate (RR) and neutralization power (NP), indicated by effective calcium carbonate (ECC). Few studies establish relative efficiency of reactivity (RER) for silicate particle-size fractions, therefore, the RER applied for lime are used. This study aimed to evaluate the reactivity of silicate materials affected by particle size throughout incubation periods in comparison to lime, and to calculate the RER for silicate particle-size fractions. Six correction sources were evaluated: three slags from distinct origins, dolomitic and calcitic lime separated into four particle-size fractions (2, 0.84, 0.30 and <0.30-mm sieves), and wollastonite, as an additional treatment. The treatments were applied to three soils with different texture classes. The dose of neutralizing material (calcium and magnesium oxides) was applied at equal quantities, and the only variation was the particle-size material. After a 90-day incubation period, the RER was calculated for each particle-size fraction, as well as the RR and ECC of each source. The neutralization of soil acidity of the same particle-size fraction for different sources showed distinct solubility and a distinct reaction between silicates and lime. The RER for slag were higher than the limits established by Brazilian legislation, indicating that the method used for limes should not be used for the slags studied here.
Resumo:
The efficiency of nitrogen fertilization for sod production can be increased by using slow-release sources such as sewage sludge compost, which, due to its characteristics can be a substitute of part or all inorganic fertilization for grass. No results were found for the use of sludge compost in sod production in Brazil. This study evaluated the effect of rates of sewage sludge compost on the production of zoysiagrass. Treatments consisted of five rates of composted sewage sludge compost (0, 12, 24, 36 and 48 Mg ha-1, on a dry basis), plus a treatment of inorganic fertilization (300 kg ha-1 N, 80 kg ha-1 P2O5, and 200 kg ha-1 K2O). The results indicated different mineralization rates of the organic compounds present in the sludge; 120 days after sludge application, more Mg (100 %), K (90 %) and N (67 %) has been released than S (57 %), P (40 %) and Ca (31 %). The use of composted sewage sludge for zoysiagrass adequately supplied nutrients when applied to the soil surface at rates more than 36 Mg ha-1. After sod cutting, the rates of sewage sludge compost provided a linear increase in potential soil acidity, soil contents of OM, P, S, Fe, Cu, Mn, Zn, Cu and Ni, and linear decrease in pH, soil concentration of Ca and Mg and base saturation. Compost rates, increasing from 0 to 48 Mg ha-1, reduced the sod mass, reaching values of 4.0 kg/sod at the highest rate. High compost doses (36 and 48 Mg ha-1, respectively) also induced the highest resistance, with values in the order of 35 and 33 kgf.
Resumo:
Pós-graduação em Agronomia (Agricultura) - FCA