99 resultados para Small x QCD
Resumo:
In chemical industry, petrochemical and oil refinery may be found situations that working pressures and very high temperatures, and alloys that comprise such equipment must have specific characteristics such. As a way to ensure that the materials are as designed, companies have some specific techniques, and one of them is X-ray fluorescence spectrometry, which allows its application in devices small and lightweight, which ensures its portability in field use. This technique however, has some shortcomings such as the impossibility of detecting carbon and other elements of low atomic number which can generate false identifications of elements that are not in the league or non-detection of existing elements. Therefore, this study investigated the reliability of this method using the apparatus Niton XL3t 800 and may conclude that their results are reliable and can be used to assist in ensuring the operational integrity of the production units of these companies
Resumo:
The small angle X-ray scattering (SAXS) technique has been used with very much versatility and success in the structural characterization of nanostructured materials. The present work deals with a study of the principles of the SAXS technique and of some classical models employed in the structural characterization of nanostructured materials. Particularly, the study of the models and of the associated methodologies is applied to a set of samples of silica gels, of varied typical structures, prepared in the Laboratório de Novos Materiais of the Departamento de Física of the IGCE. The work discusses in an introductory chapter the principles of the SAXS technique and the foundation of classical models often used in the structural characterization of materials. The classical models and the associated methodologies were applied to a variety of silica gel structures. The studies include: i) the scattering from a system of particles - Guinier's law; ii) the asymptotic scattering from a two-phase system - Porod's law; iii) systematic deviation from Porod's law - Surface Fractal; iv) heterogeneities in solids with random size distribution - DAB Model; and v) the scattering from mass fractal structures. The analyses were carried out from experimental SAXS data obtained in several opportunities at the Laboratório Nacional de Luz Síncrotron (LNLS)
Resumo:
In this paper we study the periodic orbits of the third-order differential equation x ′′′−µx ′′+ x ′ − µx = εF (x, x ′ , x ′′), where ε is a small parameter and the function F is of class C 2 .
Resumo:
Pós-graduação em Biologia Geral e Aplicada - IBB
Resumo:
The X-ray fluorescence analysis (XRF) is an important technique for the qualitative and quantitative determination of chemical components in a sample. It is based on measurement of the intensity of the emitted characteristic radiation by the elements of the sample, after being properly excited. One of the modalities of this technique is the total reflection x-ray fluorescence (TXRF). In TXRF, the angle of refraction of the incident beam tends to zero and the refracted beam is tangent to the sample-support interface. Thus, there is a minimum angle of incidence that there is no refracted beam and all the incident radiation undergoes total reflection. As it is implemented in very small samples, in a film format, self-absorption effects should not very relevant. In this study, we evaluated the feasibility of using code MCNPX (Monte Carlo N - Particle eXtended), to simulate a measure implemented by the TXRF technique. In this way, it was verified the quality of response of a system by TXRF spectroscopy using synchrotron radiation as excitation beam for a simple setup, by retrieving the characteristic energies and the concentrations of the elements in the sample. The steps of data processing, after obtaining the excitation spectra, were the same as in a real experiment and included the obtaining of the sensitivity curve for the simulated system. The agreement between the theoretical and simulated values of Ka characteristic energies for different elements was lower than 1 % .The obtained concentration of the elements of the sample had high relatively errors ( between 6 and 60 % ) due mainly to lack of knowing about some realistic physical parameters of the sample , such as density . In this way, this result does not preclude the use of MCNPX code for this type of application
Resumo:
For every possible spectrum of 2(N)-dimensional density operators, we construct an N-qubit X-state of the same spectrum and maximal genuine multipartite (GM-) concurrence, hence characterizing a global unitary transformation that -constrained to output X-states-maximizes the GM-concurrence of an arbitrary input mixed state of N qubits. We also apply semidefinite programming methods to obtain N-qubit X-states with maximal GM-concurrence for a given purity and to provide an alternative proof of optimality of a recently proposed set of density matrices for the purpose, the so-called X-MEMS. Furthermore, we introduce a numerical strategy to tailor a quantum operation that converts between any two given density matrices using a relatively small number of Kraus operators. We apply our strategy to design short operator-sum representations for the transformation between any given N-qubit mixed state and a corresponding X-MEMS of the same purity.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência Florestal - FCA
Resumo:
Ceramic powders based on Zn3Ga2Ge2O10: Cr3+ X% (X = 0.0; 0.5; 0.75; 1.0) were synthesized by solid-state reaction method. The gallium-zinc germanate doped with chromium presents an interesting property of phosphorescence, that means, it is capable of emitting light when excited by a source of radiation, and such emission remains for some time after stopping the source. For this reason, these materials can be widely applied in night-vision surveillance, (through the use of solar energy, for example), electronic devices screen, emergency routes signals, control panels indicators in dark environments, etc. In this job were considered different amounts of dopant in order to perform a comparison of structural and photoluminescent properties. For that, some analyses were performed on samples, such as XRD, FT-Raman, SEM, UV-vis and photoluminescence measurements (PL). Such analysis allowed to infer that the presence of chromium results in no phase transformation, so that the four compositions have the same set of phases: cubic, rhombohedral and hexagonal. Although the structure was not changed, chromium influences other properties / characteristics of these materials. Examples are: increase of band-gap, decrease of average particle size, small changes in binding energy checked by Raman and especially the increase of photoluminescent property. The chromium ions have great ease in replacing gallium ions in octahedral sites, resulting in emission of light with a wavelength of about 700 nm (infrared region), which is justified by the spin-forbidden 2E 4A2 transition. In other words, chromium is a favorable luminescent center, acting as a trap in the crystal structure, since it imprisons the excitation energy easily and releases it gradually, allowing the phosphorescence. It was observed that the composition ... (Complete abastract click electronic access below)