327 resultados para Single phase power systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with results of a research and development (R&D) project in cooperation with Electric Power Distribution Company in São Paulo (Brazil) regarding the development and experimental analysis of a new concept of power drive system suitable for application in traction systems of electrical vehicles pulled by electrical motors, which can be powered by urban DC or AC distribution networks. The proposed front-end structure is composed by five boost power cells in interleaving connection, operating in discontinuous conduction mode as AC-DC converter, or as DC-DC converter, in order to provide the proper DC output voltage range required by DC or AC adjustable speed drivers. Therefore, when supplied by single-phase AC distribution networks, and operating as AC-DC converter, it is capable to provide high power factor, reduced harmonic distortion in the input current, complying with the restrictions imposed by the IEC 61000-3-4 standards resulting in significant improvements for the trolleybuses systems efficiency and for the urban distribution network costs. Considering the compliance with input current restrictions imposed by IEC 61000-3-4 standards, two digital control strategies were evaluated. The digital controller has been implemented using a low cost FPGA (XC3S200) and developed totally using a hardware description language VHDL and fixed point arithmetic. Experimental results from a 15 kW low power scale prototype operating in DC and AC conditions are presented, in order to verify the feasibility and performance of the proposed system. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents possible selective current compensation strategies based on the Conservative Power Theory (CPT). This recently proposed theory, introduces the concept of complex power conservation under non-sinusoidal conditions. Moreover, the related current decompositions results in several current terms, which are associated with a specific physical phenomena (power absorption P, energy storage Q, voltage and current distortion D). Such current components are used in this work for the definition of different current compensators, which can be selective in terms of minimizing particular disturbing effects. The choice of one or other current component for compensation directly affects the sizing and cost of active and/or passive devices and it will be demonstrated that it can be done to attend predefined limits for harmonic distortion, unbalances and/or power factor. Single-phase compensation strategies will be discussed by means of the CPT and simulation results will demonstrate their performance. © 2009 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unbalance and harmonics are two major distortions in the three-phase distribution systems. In this paper an investigation into unbalance phenomena in the distribution networks using instantaneous space vector theory, is presented. Power oscillation index (POI) and effective power factor (PFe) are calculated in the network nodes for several unbalance loading conditions. For system analysis a general power flow algorithm for three-phase four-wire radial distribution networks, based on backward-forward technique, is applied. Results obtained from several case studies using medium and low voltage test feeder with unbalanced load, are presented and discussed. © 2010 Praise Worthy Prize S.r.l. - All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new methodology for the operation and control of a single-phase current-source (CS) Boost Inverter, considering that the conventional current-source inverter (CSI) has a right-half-plane (RHP) zero in its control-to-output transfer function, and this RHP zero causes the known non-minimum-phase effects. In this context, a special design with low boost inductance and a multi-loop control is developed in order to assure stable and very fast dynamics. Furthermore, the Inverter presents output voltage with very low total harmonic distortion (THD), reduced components and high power density. Therefore, this paper presents the inverter operation, the proposed control technique, and main simulation and experimental results in order to demonstrate the feasibility of the proposal. © 2010 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Voltage reference generation is an important issue on electronic power conditioners or voltage compensators connected to the electric grid. Several equipments, such as Dynamic Voltage Restorers (DVR), Uninterruptable Power Supplies (UPS) and Unified Power Quality Conditioners (UPQC) need a proper voltage reference to be able to compensate electric network disturbances. This work presents a new reference generator's algorithm, based on vector algebra and digital filtering techniques. It is particularly suited for the development of voltage compensators with energy storage, which would be able to mitigate steady state disturbances, such as waveform distortions and unbalances, and also transient disturbances, like voltage sags and swells. Simulation and experimental results are presented for the validation of the proposed algorithm. © 2011 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two-stage isolated converters for photovoltaic (PV) applications commonly employ a high-frequency transformer on the DC-DC side, submitting the DC-AC inverter switches to high voltages and forcing the use of IGBTs instead of low-voltage and low-loss MOSFETs. This paper shows the modeling, control and simulation of a single-phase full-bridge inverter with high-frequency transformer (HFT) that can be used as part of a two-stage converter with transformerless DC-DC side or as a single-stage converter (simple DC-AC inverter) for grid-connected PV applications. The inverter is modeled in order to obtain a small-signal transfer function used to design the PResonant current control regulator. A high-frequency step-up transformer results in reduced voltage switches and better efficiency compared with converters in which the transformer is used on the DC-DC side. Simulations and experimental results with a 200 W prototype are shown. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEB

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Elétrica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The second-order differential equations that describe the polyphase transmission line are difficult to solve due to the mutual coupling among them and the fact that the parameters are distributed along their length. A method for the analysis of polyphase systems is the technique that decouples their phases. Thus, a system that has n phases coupled can be represented by n decoupled single-phase systems which are mathematically identical to the original system. Once obtained the n-phase circuit, it's possible to calculate the voltages and currents at any point on the line using computational methods. The Universal Line Model (ULM) transforms the differential equations in the time domain to algebraic equations in the frequency domain, solve them and obtain the solution in the frequency domain using the inverse Laplace transform. This work will analyze the method of modal decomposition in a three-phase transmission line for the evaluation of voltages and currents of the line during the energizing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to concerns about rational use of energy, several alternative technologies of power generation appeared, including the conversion of solar energy into electrical energy by photovoltaic panels. In low-income households, the refrigerator represents considerable impact on the electric bill, since it requires constant power given its use in food preservation. It is possible to reduce this share, with the use of an alternative energy source. This work presents a timed switching electronic system, which allows commercial equipment that is not affected by short interruptions in the power supply to use a photovoltaic panel as a source of alternative energy, which usually do not provide energy continuously. Switching is made automatically in case of low incidence of sunlight, and without any form of energy storage. Between each switching, there is a dead time without power supply, therefore preventing the use of synchronizers circuits between the photovoltaic panel and the public power grid. A circuit containing a 80C31 microcontroller is used to control the system’s switching. The photovoltaic panel’s voltage inverter is in H bridge configuration, and is also controlled by the microcontroller through Pulse Width Modulation, which makes use of preprogrammed tables to generate the control signals of the power transistors. Through the use of software simulations, the proposed system was tested, which is capable of supplying intermittent single-phase loads. The simulations indicates that the project developed in this paper can be assembled into a prototype and be tested under real operating conditions, as long as the scaling of components, the characteristics of the photovoltaic panel to be used, and the project involved load are taken into account