119 resultados para Short range
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The organic charge-transfer salt EtMe3P[Pd(dmit)(2)](2) is a quasi-two-dimensional Mott insulator with localized spins S = 1/2 residing on a distorted triangular lattice. Here we report measurements of the uniaxial thermal expansion coefficients alpha(i) along the in-plane i = a and c axis as well as along the out-of-plane b axis for temperatures 1.4 K <= T <= 200 K. Particular attention is paid to the lattice effects around the phase transition at T-VBS = 25 K into a low-temperature valence-bond-solid phase and the paramagnetic regime above where effects of short-range antiferromagnetic correlations can be expected. The salient results of our study include (i) the observation of strongly anisotropic lattice distortions accompanying the formation of the valence-bond-solid phase, and (ii) a distinct anomaly in the thermal expansion coefficients in the paramagnetic regime around 40 K. Our results demonstrate that upon cooling through T-VBS the in-plane c axis, along which the valence bonds form, contracts while the second in-plane a axis elongates by the same relative amount. Surprisingly, the dominant effect is observed for the out-of-plane b axis which shrinks significantly upon cooling through T-VBS. The pronounced anomaly in alpha(i) around 40 K is attributed to short-range magnetic correlations. It is argued that the position of this maximum, relative to that in the magnetic susceptibility around 70 K, speaks in favor of a more anisotropic triangular-lattice scenario for this compound than previously thought.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the recent years, the use of proton beams in radiotherapy has been an outstanding progress (SMITH, 2006). Up to now, computed tomography (CT) is a prerequisite for treatment planning in this kind of therapy because it provides the electron density distribution required for calculation of dose and the interval of doses. However, the use of CT images for proton treatment planning ignores fundamental differences in physical interaction processes between photons and protons and is, therefore, potentially inaccurate (SADROZINSKI, 2004). Proton CT (pCT) can in principle directly measure the density distribution needed in a patient for the dose distribution (SCHULTE, et al, 2004). One important problem that should be solved is the implementation of image reconstruction algorithms. In this sense, it is necessary to know how the presence of materials with different density and composition interfere in the energy deposition by ionization and coulomb excitation, during its trajectory. The study was conducted in two stages, was used in both the program SRIM (The Stopping and Range of Ions in Matter) to perform simulations of the interaction of proton beams with pencil beam type. In the first step we used the energies in the range of 100-250 MeV (ZIEGLER, 1999). The targets were set to 50 mm in length for the beam of 100 MeV, due to its interaction with the target, and short-range, and 70 mm for 150, 200 and 250 MeV The target was composed of liquid water and a layer of 6 mm cortical bone (ICRP). It were made 9 simulations varying the position of the heterogeneity of 5 mm. In the second step the energy of 250 MeV was taken out from the simulations, due to its greater energy and less interaction. The targets were diminished to 50 mm thick to standardize the simulations. The layer of bone was divided into two equal parts and both were put in the ends of the target... (Complete abstract click electronic access below)
Resumo:
The search for quality of life (QOL) is now an ideal among thousands of people worldwide and is currently the subject has been studied in different areas of knowledge. Thus, one can perceive it in different dimensions, each with its due importance to people's lives. The verification of quality indexes of work life (QWL) may provide information on factors that directly interfere with the satisfaction and personal motivation and collective, with reflections on the structure and excellent service. To this end, we carried out a study to know the characacteristics of quality of life of nursing professionals in a state hospital in São Paulo State, based on short range of quality of life of the World Health Organization (WHOQOL-BREF). This work is a study with a quantitative approach, cross-sectional descriptive and exploratory data analysis using descriptive statistics, involving a sample of 281 nurses who answered the scale for measuring quality of life, composed of four areas: physical, psychological, social relationships and environment. In the study, these areas were related to the professional position, and shift work. There was a satisfactory quality of life in the study population in different areas of WHOQOL-BREF. There was no statistically significant changes in quality of life among the variables. It follows that the population presented data consistent with an adequate quality of life, thus making relevant to addressing the quality of life of nursing in a healthcare organization which has as fundamental to the pursuit of quality through the accreditation process second hospital established by the National Accreditation Organization (ONA) that aims at establishing and implementing a process of improving health care, thereby stimulating the services to achieve higher standards of quality
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Electronic properties of disordered binary alloys are studied via the calculation of the average Density of States (DOS) in two and three dimensions. We propose a new approximate scheme that allows for the inclusion of local order effects in finite geometries and extrapolates the behavior of infinite systems following finite-size scaling ideas. We particularly investigate the limit of the Quantum Site Percolation regime described by a tight-binding Hamiltonian. This limit was chosen to probe the role of short range order (SRO) properties under extreme conditions. The method is numerically highly efficient and asymptotically exact in important limits, predicting the correct DOS structure as a function of the SRO parameters. Magnetic field effects can also be included in our model to study the interplay of local order and the shifted quantum interference driven by the field. The average DOS is highly sensitive to changes in the SRO properties and striking effects are observed when a magnetic field is applied near the segregated regime. The new effects observed are twofold: there is a reduction of the band width and the formation of a gap in the middle of the band, both as a consequence of destructive interference of electronic paths and the loss of coherence for particular values of the magnetic field. The above phenomena are periodic in the magnetic flux. For other limits that imply strong localization, the magnetic field produces minor changes in the structure of the average DOS. © World Scientific Publishing Company.
Resumo:
We propose a novel method to calculate the electronic Density of States (DOS) of a two dimensional disordered binary alloy. The method is highly reliable and numerically efficient, and Short Range Order (SRO) correlations can be included with no extra computational cost. The approach devised rests on one dimensional calculations and is applied to very long stripes of finite width, the bulk regime being achieved with a relatively small number of chains in the disordered case. Our approach is exact for the pure case and predicts the correct DOS structure in important limits, such as the segregated, random, and ordered alloy regimes. We also suggest important extensions of the present work. © 1995.
Resumo:
The use of relatively low numbers of sires in cattle breeding programs, particularly on those for carcass and weight traits in Nellore beef cattle (Bos indicus) in Brazil, has always raised concerns about inbreeding, which affects conservation of genetic resources and sustainability of this breed. Here, we investigated the distribution of autozygosity levels based on runs of homozygosity (ROH) in a sample of 1,278 Nellore cows, genotyped for over 777,000 SNPs. We found ROH segments larger than 10 Mb in over 70% of the samples, representing signatures most likely related to the recent massive use of few sires. However, the average genome coverage by ROH (>1 Mb) was lower than previously reported for other cattle breeds (4.58%). In spite of 99.98% of the SNPs being included within a ROH in at least one individual, only 19.37% of the markers were encompassed by common ROH, suggesting that the ongoing selection for weight, carcass and reproductive traits in this population is too recent to have produced selection signatures in the form of ROH. Three short-range highly prevalent ROH autosomal hotspots (occurring in over 50% of the samples) were observed, indicating candidate regions most likely under selection since before the foundation of Brazilian Nellore cattle. The putative signatures of selection on chromosomes 4, 7, and 12 may be involved in resistance to infectious diseases and fertility, and should be subject of future investigation.
Resumo:
We study N-layer samples (N ≤ 10) for the Heisenberg model, with ferro- and antiferromagnetic exchange couplings, using a modified version of the Onsager reaction field approximation. The present scheme includes short-range spin-spin correlations, and allows for layer-dependent order parameters when free surface boundary conditions are imposed. The limits N = 1 (two dimensions) and N → ∞ (three dimensions) can be solved analytically, while systems with several layers have to be numerically calculated. We found no indication of a phase transition at finite temperature up to the sizes investigated (N = 10), the layered systems behaving essentially as two-dimensional. A phase transition is only obtained for the three-dimensional limit. © 1993.
Resumo:
Ba1-xCaxTiO3, Ba1-xSrxTiO3 and Sr1-xCaxTiO3 (x = 0, 0.25, 0.50, 0.75 and 1) nanoparticles were synthesized using the microwave-assisted hydrothermal method. Samples were prepared for 40 minutes at 140°C under a pressure of 3 MPa using an adapted domestic microwave oven. The samples were characterized by X-Ray diffraction (XRD), scanning electron microscopy (FE-SEM), and Raman, photoluminescence (PL) and ultraviolet-visible (UV-Vis) spectroscopies. XRD data show that ceramic powders have crystalline phases associated with a short-range structural disorder. This structural disorder is confirmed by Raman spectral bands indicating multi-phonon processes and the presence of defects or impurities. Such defects account for a broad band in the photoluminescence spectrum in the green light (460 nm) region for all samples. Gap energy variation, obtained from UV-Vis spectra, suggest a non-uniform band structure of these titanates in accordance with the PL results. The morphology of each sample is changed with doping and varies from a spherical to cubic appearance for energy minimization.
Resumo:
Pós-graduação em Química - IQ