116 resultados para Semiconductor polymer


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims and objectives: The behavior of polymer-matrix composite is dependent on the degree of conversion. The aim of this study was to evaluate the degree of conversion of two resin cements following storage at 37°C immediately, 24 and 48 hours, and 7 days after light-curing by FTIR analysis. Materials and methods: The specimens were made in a metallic mold and cured with blue LED with power density of 500 mW/cm2 for 30 seconds. The specimens were pulverized, pressed with KBr and analyzed with FTIR following storage times. Statistical analysis used: ANOVA (two-way) and Tukey's post hoc. Results: To the polymer-matrix composites between 24 and 48 hours does not show a significant increase (p > 0.05), however, the highest values were found after 7 days. Conclusion: The polymer-matrix composites used in this study showed similarity on the degree of conversion and increased of according to the time of storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Nowadays, there has been increased incidence of skin cancer, which is mainly related to increased sun exposure. Although sunscreen products may prevent the appearing of this disease, consumers may not use them due to some factors, including the sensory properties. The Aluminum Starch Octenylsuccinate (Dry-Flo® Pure, Akzo Nobel), an aluminum salt produced by the reaction of anhydride octenylsuccinic with starch, is able to improve the spreadability on the skin and reduce the oiliness of the formulation. Objective: To verify volunteers' acceptance for sunscreen formulation with natural polymer, compared with a control formulation (without polymer). Methods: To carry out the sensory analysis a formulation with or without 2. 0% Aluminum Starch Octenylsuccinate was prepared. Formulations had FPS 15, with critical wavelength of 353 nm, determined by testing in silico using the BASF® Sunscreen Simulator. Sensory analysis was performed on 60 students of both sexes, aged between 18 and 25 years, regular users of sunscreen products. Results: The results suggested that the polymer was able to promote a very soft and velvety feel on the skin when used in a sunscreen formulation, and it was able to mitigate and noticeably reduce the oiliness of the skin. Of the 60 volunteers who participated in the study, 45 volunteers (75%) considered that the polymer formulation provides little brightness or did not notice the difference in brightness of the skin after application. Conclusions: It was able to improve the sensory of the product, contributing to greater volunteers' acceptance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, a biosensor was built with smart material based on polymer brushes. The biosensor demonstrated a pH-sensitive on-off property, and it was further used to control or modulate the electrochemical responses of the biosensor. This property could be used to realize pH-controlled electrochemical reaction of hydrogen peroxide and HRP immobilized on polymer brushes. The composite film also showed excellent amperometric i-t response toward hydrogen peroxide in the concentration range of 0-13 μM. In future, this platform might be used for self-regulating targeted diagnostic, drug delivery and biofuel cell based on controllable bioelectrocatalysis. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rheological behavior of poly(ethylene glycol) of 1500 g·mol -1(PEG1500) aqueous solutions with various polymer concentrations (w = 0.05, 0.10, 0.15, 0.20 and 0.25) was studied at different temperatures (T = 283.15, 288.15, 293.15, 298.15 and 303.15) K. The analyses were carried out considering shear rates ranging from (20 to 350) s-1, using a cone-and-plate rheometer under controlled stress and temperature. Classical rheological models (Newton, Bingham, Power Law, Casson, and Herschel-Bulkley) were tested. The Power Law model was shown suitable to mathematically represent the rheological behavior of these solutions. Well-adjusted empirical models were derived for consistency index variations in function of temperature (Arrhenius-type model; R2 > 0.96), polymer concentration (exponential model; R2 > 0.99) or the combination of both (R 2 > 0.99). Additionally, linear models were used to represent the variations of behavior index in the functions of temperature (R2 > 0.83) and concentration (R2 > 0.87). © 2013 American Chemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The methodology for fracture analysis of polymeric composites with scanning electron microscopes (SEM) is still under discussion. Many authors prefer to use sputter coating with a conductive material instead of applying low-voltage (LV) or variable-pressure (VP) methods, which preserves the original surfaces. The present work examines the effects of sputter coating with 25 nm of gold on the topography of carbon-epoxy composites fracture surfaces, using an atomic force microscope. Also, the influence of SEM imaging parameters on fractal measurements is evaluated for the VP-SEM and LV-SEM methods. It was observed that topographic measurements were not significantly affected by the gold coating at tested scale. Moreover, changes on SEM setup leads to nonlinear outcome on texture parameters, such as fractal dimension and entropy values. For VP-SEM or LV-SEM, fractal dimension and entropy values did not present any evident relation with image quality parameters, but the resolution must be optimized with imaging setup, accompanied by charge neutralization. © Wiley Periodicals, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The substitution of steel as a raw material in the production of axial pistons for pressure washers by polyphthalamide, polytetrafluoroethylene and glass fiber-based composite was studied. The new production process with composite consists of only two steps, while the production of the steel piston is to comprise of thirteen steps. This replacement would result in an estimated reduction of 80% of water consumption, 83% of electricity consumption, 73% of the total cost and 88% of the final mass. With regard to the main mechanical properties required for the end product, the composite was found to withstand the critical axial loads and it shows acceptable wear resistance in an environment without lubrication, an additional advantage of this replacement. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germanium- and tellurium-based glasses have been largely studied due to their recognized potential for photonics. In this paper, we review our recent studies that include the investigation of the Stokes and anti-Stokes photoluminescence (PL) in different glass systems containing metallic and semiconductor nanoparticles (NPs). In the case of the samples with metallic NPs, the enhanced PL was attributed to the increased local field on the rare-earth ions located in the proximity of the NPs and/or the energy transfer from the metallic NPs to the rare-earth ions. For the glasses containing silicon NPs, the PL enhancement was mainly due to the energy transfer from the NPs to the Er3+ ions. The nonlinear (NL) optical properties of PbO-GeO 2 films containing gold NPs were also investigated. The experiments in the pico- and subpicosecond regimes revealed enhanced values of the NL refractive indices and large NL absorption coefficients in comparison with the films without gold NPs. The reported experiments demonstrate that germanate and tellurite glasses, having appropriate rare-earth ions doping and NPs concentration, are strong candidates for PL-based devices, all-optical switches, and optical limiting. © 2013 Cid Bartolomeu de Araujo et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The polyvinyl alcohol (PVA)/barium zirconium titanate Ba[Zr0.1Ti0.9]O3 (BZT) polymer-ceramic composites with different volume percentage are obtained from solution mixing and hot-pressing method. Their structural and electrical properties are characterized by X-ray diffraction (XRD), Rietveld refinement, cluster modeling, scanning electron microscope and dielectric study. XRD patterns of PVA/BZT polymer-ceramics composite (with 50% volume fractions) indicate no obvious differences than the XRD patterns of pure BZT which shows that the crystal structure is still stable in the composite. The scanning electron micrograph indicates that the BZT ceramic is dispersed homogeneously in the polymer matrix without agglomeration. The dielectric permittivity (ε r) and the dielectric loss (tan δ) of the composites increase with the increase of the volume fraction of BZT ceramic. Theoretical models are employed to rationalize the dielectric behavior of the polymer composites. The dielectric properties of the composites display good stability within a wide range of temperature and frequency. The excellent dielectric properties of these polymer-ceramic composites indicate that the BZT/PVA composites can be a candidate for embedded capacitors. © 2013 Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a theoretical and experimental study of the heterostructure photocatalytic activity in a CdS or ZnS and CdS@ZnS decorated system prepared by a microwave assisted solvothermal (MAS) method. A theoretical model of the decorated system was created in order to analyze the electronic transition mainly in their interface. The results show that CdS and ZnS interfaces produce an electron charge transfer from the CdS electron-populated clusters to the ZnS hole-populated clusters which helps to enhance the photocatalytic activity of the CdS@ZnS decorated system. © 2013 The Royal Society of Chemistry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An Advanced Oxidation Process (AOPs) was carried out in this study with the use of immobilized ZnO and solar/UV as an energy source to degrade dairy wastewater. The semibatch reactor system consisted of metal plate of 800 × 250 mm and a glass tank. The reaction time was of 3 h for 3 L of dairy wastewater. Experiments were performed based on a surface response methodology in order to optimize the photocatalytic process. Degradation was measured in percentage terms by total organic carbon (TOC). The entry variables were ZnO coating thickness and pH, using three levels of each variable. The optimized results showed a TOC degradation of 31.7%. Optimal parameters were metal-plate coating of 100 m of ZnO and pH of 8.0. Since solar/UV is a constant and free energy source in most tropical countries, this process tends to suggest an interesting contribution in dairy wastewater treatment, especially as a pretreatment and the optimal conditions to guarantee a better efficiency of the process. © 2013 Gisella R. Lamas Samanamud et al.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a sensor was built up with smart material based on polymer brush and gold nanoparticles. The modified electrode functionalized with polyacrylic acid (PAA) tethered to indium tin oxide (ITO) and covered with gold nanoparticle (ITO/PAA/Au) demonstrated switchable interfacial properties discriminating different pHs. The switchable electrochemical and plasmonic process was characterized by cyclic voltammetry (CV), electrochemistry impedance spectroscopy (EIS), and localized surface plasmon resonance (LSPR).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monitoring non-ionizing radiant energy is increasingly demanded for many applications such as automobile, biomedical and security system. Thermal type infrared (IR) sensors can operate at room temperature and pyroelectric materials have high sensitivity and accuracy for that application. Working as thermal transducer pyroelectric sensor converts the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. In the present study the composite made of poly(vinylidene fluoride) -PVDF and lead zirconate titanate (PZT) partially recovered with polyaniline (PAni) conductor polymer has been used as sensor element. The pyroelectric coefficient p(T) was obtained by measuring the pyroelectric reversible current, i.e., measuring the thermally stimulated depolarization current (TSDC) after removing all irreversible contribution to the current such as injected charge during polarization of the sample. To analyze the sensing property of the pyroelectric material, the sensor is irradiated by a high power light source (halogen lamp of 250 W) that is chopped providing a modulated radiation. A device assembled in the laboratory is used to change the light intensity sensor, an aluminum strip having openings with diameters ranging from 1 to 10 mm incremented by one millimeter. The sensor element is assembled between two electrodes while its frontal surface is painted black ink to maximize the light absorption. The signal from the sensor is measured by a Lock-In amplifier model SR530 -Stanford Research Systems. The behavior of the output voltage for an input power at several frequencies for PZT-PAni/PVDF (30/ 70 vol%) composite follows the inverse power law (1/ f) and the linearity can be observed in the frequency range used.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)