266 resultados para SCANNING ELECTRON MICROSCOPY AND STARCH
Resumo:
Background: Chemical modification of implant surface is typically associated with surface topographic alterations that may affect early osseointegration. This study investigates the effects of controlled surface alterations in early osseointegration in an animal model.Methods: Five implant surfaces were evaluated: 1) alumina-blasting, 2) biologic blasting, 3) plasma, 4) microblasted resorbable blasting media (microblasted RBM), and 5) alumina-blasting/acid-etched (AB/AE). Surface topography was characterized by scanning electron microscopy and optical interferometry, and chemical assessment by x-ray photoelectron spectroscopy. The implants were placed in the radius of six dogs, remaining 2 and 4 weeks in vivo. After euthanization, specimens were torqued-to-interface failure and non-decalcified - processed for histomorphologic bone-implant contact, and bone area fraction-occupied evaluation. Statistical evaluation was performed by one-way analysis of variance (P < 0.05) and post hoc testing by the Tukey test.Results: The alumina-blasting surface presented the highest average surface roughness and mean root square of the surface values, the biologic blasting the lowest, and AB/AE an intermediate value. The remaining surfaces presented intermediate values between the biologic blasting and AB/AE. The x-ray photoelectron spectroscopy spectra revealed calcium and phosphorus for the biologic blasting and microblasted RBM surfaces, and the highest oxygen levels for the plasma, microblasted RBM, and AB/AE surfaces. Significantly higher torque was observed at 2 weeks for the microblasted RBM surface (P < 0.04), but no differences existed between surfaces at 4 weeks (P > 0.74). No significant differences in bone-implant contact and bone area fraction-occupied values were observed at 2 and 4 weeks.Conclusion: The five surfaces were osteoconductive and resulted in high degrees of osseointegration and biomechanical fixation. J Periodontol 2011;82:742-750.
Resumo:
The genus Hymenaea is characterized by a great diversity of secretory structures, but there are no reports of colleters yet. The objectives of this study are to report the occurrence and describe the origin and structure of colleters in Hymenaea stigonocarpa Mart. ex Hayne. Shoot apex samples were collected, fixed, and processed for light microscopy, scanning electron microscopy, and transmission electron microscopy as per usual methods. Colleters occur predominantly on the stipule's adaxial side. These structures are found at the base on a narrow strip, corresponding to the median vein up to half the length of the stipule. When present on the abaxial side, they are concentrated at the base and restricted to the margins. Colleters develop from the protoderm; they are elongate and club-shaped. Their body has no stratification; their surface cells differ from the inner cells only in position and presence of cuticle. Colleter cells have thin walls, dense cytoplasm, large nuclei, many mitochondria, rough endoplasmic reticulum, and abundant dictyosomes. Histochemical tests with Ruthenium red showed pectic compounds in the cytosol. In H. stigonocarpa, colleter arrangement is compatible with the hypothesis that they protect shoot apex. In this species, protection is reinforced by the sheath formed by the stipule pairs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thin films of lithium niobate were deposited on the Pt/Ti/SiO2 (111) substrates by spin coating from the polymeric precursor method (Pechini process). Annealing in static air and oxygen atmosphere was performed at 500 degreesC for 3 h. The films obtained were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The dielectric constant and dissipation factor were measured in frequency region from 10 Hz to 10 MHz. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The influence of oxygen atmosphere on crystallization, morphology and properties of LiNbO3 thin films is discussed. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
BaxSr1-xTiO3 (x = 0.6) (BST) thin films were successfully prepared on a Pt(111)/TiO2/SiO2/Si(100) substrate by spin coating, using the polymeric precursor method. BST films with a perovskite single phase were obtained after heat treatment at 700 degrees C. The multilayer BST thin films had a granular structure will a grain size of approximately 60 nm. A 480-nm-thick film was obtained by carrying out five cycles of the spin-coating/heating process. Scanning electron microscopy and atomic force microscopy analyses showed that the thin films had a smooth, dense, crack-free surface with low surface roughness (3.6 nm). At room temperature and at a frequency of 100 kHz, the dielectric constant and the dissipation factor were, respectively, 748 and 0.042. The high dielectric constant value was due to the high microstructural quality and chemical homogeneity of the thin films obtained by the polymeric precursor method.
Resumo:
Thin films of pure RuO2 and IrO2 and mixed Ru0.5Ir0.5O2 oxide modified with Pt particles were prepared by a sol-gel method in the form of thin films of similar to 2 mu m thickness on Ti substrates. Surface morphology of these Pt- modified oxides was examined by scanning electron microscopy and was found to exhibit a significant influence of the chemical composition of the oxide matrix. Element mapping showed homogeneous distribution of the metals. X- ray diffraction and X- ray photoelectron spectroscopy analyses showed that these films consist of metallic Pt particles dispersed in an oxide matrix. Cyclic voltammetry in acid solutions showed that the sol- gel prepared layers have relatively high Pt surface areas. The electrocatalytic activity of these materials toward the anodic oxidation of formaldehyde and methanol was compared in terms of onset potential and current density and was found to follow the sequence: Pt- Ru0.5Ir0.5O2/ Ti > Pt- RuO2/ Ti > Pt- IrO2/ Ti.
Resumo:
Reactive pure and manganese-doped (5% and 10 at.%) ceria nanosized powders were prepared by the polymeric precursor technique. Physical properties of powder materials were studied by X-ray diffraction, nitrogen adsorption, and diffuse reflectance infrared Fourier transform spectroscopy. Characterization of powder compacts after fast firing at 1200 degrees C for 5 min was carried out by scanning electron microscopy and impedance spectroscopy measurements. The bulk apparent density of sintered pellets was determined for pellets of different compositions sintered at 1200 degrees C. A gradual decrease of the particle size occurs with increasing doping content. Relatively high values of apparent density were obtained after fast firing doped specimens at 1200 degrees C. DRIFT spectra evidence that a fraction of Mn ions was segregated onto particles surface. The electrical resistivity of sintered pellets reveals different mechanisms of conduction depending on the Mn content. (C) 2005 Elsevier B.V All rights reserved.
Resumo:
The effect of LiNbO3 and KNbO3 seeds on the microstructure and dielectric characteristics of PMN ceramic prepared by columbite route have been investigated with the addition of 0, 1, and 2-wt% of seeds. X-ray diffraction, Scanning Electron Microscopy and an impedance analyzer were used to characterize the influence of seeds on physical characteristics and dielectric properties of PMN. LiNbO3 -seeded PMN samples present a significant increase in the amount of perovskite phase. The addition of LiNbO3 seeds in sintered PMN ceramics at 1100degreesC during 4 h causes a decrease in the porosity and the amount of pyrochlore phase. Weight losses during sintering of PMN ceramics are suppressed more significantly for LiNbO3 -seeded PMN. T-m of PMN ceramics changes with seeds concentration. KNbO3 seeds displace T-m to lower temperature whereas LiNbO3 causes its elevation. Dielectric constants of approximately 13,000 at 1 kHz was measured at -5degreesC in PMN ceramics with 1-wt% of LiNbO3 seeds.
Resumo:
Reactive zirconia powder was synthesized by the complexation of zirconium metal from zirconium hydroxide using a solution of 8-hydroxiquinoline. The kinetics of zirconia crystallization was followed by X-ray diffraction, scanning electron microscopy and surface area measured by the nitrogen adsorption/desorption technique. The results indicated that zirconia with a surface area as high as 100 m(2)/g can be obtained by this method after calcination at 500degreesC. Zirconia presents three polymorphic phases (monoclinic, tetragonal and cubic), which are reversibly interconversible. The cluster model Zr4O8 and Z(r)4O(7)(+2) was used for a theoretical study of the stabilization process. The ab initio RHF method was employed with the Gaussian94 program and the total energies and the energy gap of the different phases were calculated and compared with the experimental energy gap. The theoretical results show good reproducibility of the energy gap for zirconia. (C) 2004 Kluwer Academic Publishers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)