190 resultados para Rare earth metals.


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Temperature investigation of infrared-to-visible frequency upconversion in erbium-doped tellurite glasses excited by CW laser radiation at 1540 nm and under cryogenic temperatures is reported. Intense upconversion emission signals around 530, 550 and 660 nm corresponding to the H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground state were generated and studied as a function of the laser intensity and temperature. The upconversion excitation mechanism of the Er3+ ions emitting energy levels was accomplished via stepwise multiphoton absorption. The green upconversion luminescence exhibited a fivefold intensity enhancement when the temperature of the sample was varied in the range between 5 and 300 K. A maximum green upconversion intensity was attained around 120 K and a steady decreasing behavior for higher temperatures up to 300 K was observed. A model based upon conventional rate equations was used to model the observed temperature evolution of the upconversion luminescence. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Upconversion luminescence and thermal effects in Pr3+/Yb3+- and Er3+/Yb3+-codoped 60TeO(2)-10GeO(2)-10K(2)O-10Li(2)O-10Nb(2)O(5) tellurite glasses excited by CW infrared radiation at 1.064 mum is reported. Generation of intense green and red fluorescence emission in Er3+/Yb3+-codoped samples and appreciable upconversion luminescence in the wavelength region of 450-680 nm in Pr3+/Yb3+-codoped samples is observed. Temperature-induced enhancement of X12 in the upconversion efficiency in Er3+/Yb3+- and X10 in the Pr3+/Yb3+-doped samples is demonstrated. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Blue, green, red, and near-infrared upconversion luminescence in the wavelength region of 480-740 nm in Pr3+/Yb3+-codoped lead-cadmium-germanate glass under 980 nm diode laser excitation, is presented. Upconversion emission peaks around 485, 530, 610, 645, and 725 nm which were ascribed to the P-3(0)-H-3(J) (J = 4, 5, and 6), and P-3(0)-F-3(J) (J = 2, 3, and 4), transitions, respectively, were observed. The population of the praseodymium upper P-3(0) emitting level was accomplished through a combination of ground-state absorption of Yb3+ ions at the F-2(7/2), energy-transfer Yb3+(2F(5/2))-Pr3+(H-3(4)), and excited-state absorption of Pr3+ ions provoking the (1)G(4)-P-3(0) transition. The dependence of the upconversion luminescence upon the Yb3+-concentration and diode laser power, is also examined, in order to subsidize the proposed upconversion excitation mechanism. (C) 2004 Elsevier B,V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Infrared-to-visible frequency upconversion through cooperative energy-transfer and thermal effects in Tb3+/Yb3+-codoped tellurite glasses excited at 1.064 mum is investigated. Bright luminescence emission around 485, 550, 590, 625 and 65 nm, identified as due to the D-5(4) --> F-7(J) (J= 6, 5, 4, 3, and 2) transitions of the terbium ions, respectively, was recorded. The excitation of the D-5(4) emitting level of the Tb3+ ions is assigned to cooperative energy-transfer from pairs of ytterbium ions.. The effect of temperature on the upconversion process was examined and the results revealed a fourfold upconversion enhancement in the 300-500 K interval. The enhancement of the upconversion process is due to the temperature dependence of the Yb3+-sensitizer absorption cross-section under anti-Stokes excitation. A rate-equation. model using multiphonon-assisted absorption for the ytterbium excitation combined with the energy migration effect between Yb-Yb pair, and Tb3+ ground-state depopulation via multiphonon excitation of the F-7(J) excited states describes quite well the experimental results. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spongiolite from Mato Grosso do Sul (Brazil), natural inorganic composite constituted of silica needles, was treated with concentrated phosphoric acid at high temperatures. Superficial coating of the needles was proved to be constituted of silicon diphosphate, a compound offering six-coordinated silicon sites. Owing to the affinity of three charged ions to phosphate groups, this coating acts as specific adsorbent for the rare earth elements which prefer octahedral coordination (starting from samarium, yttrium included). The uptake of lanthanum and neodymium are significantly lower due to different coordination tendencies. Lanthanide fixation upon silica with PO4 groups anchored on its surface may be useful in the manufacturing of special phosphate-silicate glasses. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Frequency upconversion luminescence in erbium-doped PbGeO3-PbF2-CdF2-based transparent glass ceramics (TGC) under 980 nm infrared excitation is investigated. Upconversion emission signals around 410, 525, 550, 660, and 850 nm were generated and identified as due to the H-2(9/2) H-2(11/2), S-4(3/2), and F-4(9/2) transitions to the I-4(15/2) ground-state, and S-4(3/2)-I-4(13/2), respectively. The erbium ions excited-state emitting levels were populated via a combination of stepwise ground-state absorption (GSA), excited-state absorption (ESA), and cross-relaxation processes. The results also disclosed that both blue (410 nm) and red (660 nm) upconversion emission signals in the transparent glass ceramic sample presented twice as much intensity as compared to its vitreous counterpart. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Germanate glasses are of interest for optoelectronic applications because they combine high mechanical strength, high chemical durability and temperature stability with a large transmission window (400 to 4500 nm) and high refractive index (2.0). GeO2-PbO-Bi2O3 glasses doped with Y-b(3+) were fabricated by melting powders in a crucible and then pouring them in a brass mold. Energy Dispersive Spectroscopy showed that the glass composition has a high spatial uniformity and that the Yb concentration in the solid sample is proportional to the Yb concentration in the melt, what was confirmed by absorption measurements. Intense blue emission at 507 nm was observed, corresponding to half of the wavelength of the near infrared region (NIR) emission; besides, a decay lifetime of 0.25 ms was measured and this corresponds to half of the decay lifetime in the infrared region; these are very strong indications of the presence of blue cooperative luminescence. Larger targets have been produced to be sputtered, resulting in thin films for three dimensional (3D) display and waveguide applications. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electrical properties of Er-doped SnO2 thin films obtained by sol-gel-dip-coating technique were measured. When compared to undoped tin dioxide, rare-earth doped films present much higher resistivity, indicating that Er3+ presents an acceptor-like character into the matrix, which leads to a high degree of electric charge compensation. Current-voltage characteristics, measured above room temperature for Er-doped films, lead to non-linear behavior and two conduction regimes. In the lower electric field range the conduction is dominated by Schottky emission over the grain boundary potential barrier, which presents an average value of 0.85 eV. Increasing the applied bias, a second regime of conduction is observed, since the Poole-Frenkel coulombic barrier lowering becomes a significant effect. The obtained activation energy for ionization is 0.67 eV. (C) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Visible frequency upconversion emission through resonant energy-transfer involving neodymium and praseodymium ions in PbGeO3-PbF2-CdF2 glass excited by a semiconductor laser at 8 10 nm is investigated. Luminescence emission centered around 485, 530, 610, and 645 nm, which correspond to the P-3(0) -> H-3(4), P-3(1) + I-1(6) -> H-3(5), P-3(0) -> H-3(6) and P-1(0) -> F-3(2) transitions of praseodymium ions, respectively, are observed. The upconversion excitation of the Pr3+ ions excited-state emitting levels was accomplished by means of an ion-pair interaction involving ground-state absorption, multiphonon relaxation, and excited-state absorption of pump photons at 8 10 nm by the Nd3+ (I-4(9/2) -> H-2(9/2), F-4(5/2); F-4(3/2) -> P-2(1/2)) and direct energy-transfer to Pr3+ ((4)G(11/2) + K-2(11/2), H-3(4) -> I-4(9/2), P-3(1) + I-1(6)). The dependence of the upconversion emission intensity upon the excitation power, and neodymium concentration are also examined. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Er3+ doped SnO2 xerogels have been obtained from aqueous colloidal suspensions. Emission and excitation spectra were obtained and allowed the identification of two main families of sites for Er3+. In the first one Er3+ substitutes for Sn4+ in the SnO2 cassiterite structure. In the second Er3+ are found adsorbed at the SnO2 particle surface. For the first family of sites the technological important infrared Er3+ emission about 1.5 mum is efficiently excited through absorption at the SnO2 conduction band at 3.8 eV. on the other hand the emission due to adsorbed ions appears inhomogeneously broadened by the statistical distribution of sites available for Er3+ ions at the surface of the particles. Moreover it is not excited by the host. The emission of this second family of sites could be also excited by an energy transfer mechanism involving Yb3+ ions also adsorbed a posteriori at particles surface. Results are compared with spectra obtained for Eu3+ doped samples. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report luminescent and morphological studies with yttrium oxide samples doped with ytterbium and erbium. The samples were prepared by the combustion method and also from different precursors: oxalate, basic carbonate and polymeric resin. All powders were identified Lis being an yttrium oxide with a C-form structure, independent of the employed precursor. From mean crystallite size measurements, it was verified that oxides prepared through the polymeric precursor and combustion methods lead to the smallest crystallite size. Particle shape and size were investigated by SEM and TEM, and showed that both the oxalate precursor and the combustion methods do not provide oxide materials of suitable shape or size, on the other hand. The basic carbonate and polymeric precursors resulted in spherically shaped particles with an average diameter of 90 and 15 run. respectively, Upon 980 run diode laser excitation, green and red emission lines were detected for all samples and were assigned to the H-2(11/2) S-4(3/2) -> I-4(15/2) and (4)Fg(9/2) -> 4I(15/12) transitions, respectively. Such transitions are characteristic for Er3+ and result from energy transfer from Yb3+ energy levels, F-2(7/2) -> F-2(5/2). A relationship between the decrease in the mean crystallite size and the enhancement in red emission was also established as well as the influence of the presence of a high percentage of Yb-3 Both factors promote ET from Yb3+ (F-2(5/2)) to Er3+ (I-4(11/2)). (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solid-state compounds of general formula LnL(3)center dot nH(2)O, where Ln represents heavier lanthanides and yttrium and L is 2-chlorobenzylidenepyruvate, have been synthesized. Chemical analysis, simultaneous thermogravimetry-differential analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, elemental analysis and infrared spectroscopy have been employed to characterize and to study the thermal behaviour of these compounds in dynamic air atmosphere.On heating these compounds decompose in four (Gd, Tb, Ho to Lu, Y) or five (Eu, Dy) steps. They lose the hydration water in the first step and the thermal decomposition of the anhydrous compounds up to 1200 degrees C occurs with the formation of the respective oxide, Tb4O7 and Ln(2)O(3) (Ln=Eu, Gd, Dy to Lu and Y) as final residue. The dehydration enthalpies found for these compounds (Eu, to Lu and Y) were: 65.77, 55.63, 86.89, 121.65, 99.80, 109.59, 131.02, 119.78, 205.46 and 83.11 kJ mol(-1), respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rare earth (RE) ions have spectroscopic characteristics to emit light in narrow lines, which makes RE complexes with organic ligands candidates for full color OLED (Organic Light Emitting Diode) applications. In particular, beta-diketone rare earth (RE(3+)) complexes show high fluorescence emission efficiency due to the high absorption coefficient of the beta-diketone and energy transfer to the central ion. In this work, the fabrication and the electroluminescent properties of devices containing a double and triple-layer OLED using a new beta-diketone complex, [Eu(bmdm)(3)(tppo)(2)], as transporting and emitting layers are compared and discussed. The double and triple-layer devices based on this complex present the following configurations respectively: device 1: ITO/TPD (40 nm)/[Eu(bmdm)(3)(tppo)(2)] (40 nm)/Al (150 nm); device 2: ITO/TPD (40 nm)/[Eu(bmdm)(3) (tppo)(2)] (40 nm)/Alq(3) (20 nm)/Al (150 nm) and device 3: ITO/TPD (40 nm)/bmdm-ligand (40 nm)/Al (150 nm), were TPD is (N,N'-diphenyl-N,N'-bis(3-methylphenyl)-1,1-biphenil-4,4-diamine) and bmdm is butyl methoxy-dibenzoyl-methane. All the films were deposited by thermal evaporation carried out in a high vacuum system. These devices exhibit high intensity photo- (PL) and electro-luminescent (EL) emission. Electroluminescence spectra show emission from Eu(3+) ions attributed to the (5)D(0) to (7)F(J) (J = 0, 1, 2, 3 and 4) transitions with the hypersensitive (5)D(o) -> (7)F(2) transition (around 612 nm) as the most prominent one. Moreover, a transition from (5)D(1) to (7)F(1) is also observed around 538 nm. The OLED light emission was almost linear with the current density. The EL CIE chromaticity coordinates (X = 0.66 and Y = 0.33) show the dominant wavelength, lambda(d) = 609 nm, and the color gamut achieved by this device is 0.99 in the CIE color space. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Organic-inorganic hybrids, named di-ureasils and described by polyether-based chains grafted to both ends to a siliceous backbone through urea cross linkages, were used as hosts for incorporation of the well-known coordination complex of trivalent europium (Eu3+) ions described by the formula [Eu(TTA)(3)(H2O)(2)] (where TTA stands for thenoyltrifluoroacetone). By comparing with Eu3+-doped di-ureasil without complex form the new materials prepared here enhanced the quantum efficiency for photoemission of Eu3+ ions. The enhancement can be explained by the coordination ability of the organic counterpart of the host structure which is strong enough to displace water molecules in [Eu(TTA)(3)(H2O)(2)] from the rare earth neighbourhood after the incorporation process. High intensity of Eu3+ emission was observed with a low non-radiative decay rate under ultraviolet excitation. The quantum efficiency calculated from the decay of D-5(0) emission was 74%, which in the same range of values previously obtained for the most efficient Eu3+ coordination compounds reported in literature. Luminescence, X-ray absorption and infrared absorption results considered together leads to a picture where the first coordination shell of Eu3+ is composed of the 6 oxygen atoms of the 3 beta-diketonate ligands and 2 ether-like oxygen atoms of the host. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, the influence on optical properties of alkali halides such as CsCl in a covalent glassy matrix has been investigated. Chalcogenide glasses belonging to the (GeS2)-(Ga2S3)-CsCI system with high ratio of CsCl present an entire transparency in the visible range. These glasses maintain good transmission up to 12 mu m. Furthermore, the thermo-mechanical properties and the glass hygroscopicity have been investigated as function of the CsCl amount. This new generation of glasses presents a great interest for optical application. They could be used both for passive applications (multi-spectral imaging) and active applications for rare-earth doping due to their good transmission in the visible range, increasing optical pumping possibilities.